Logo

Lecture Notes on Quantum Brownian Motion

Small book cover: Lecture Notes on Quantum Brownian Motion

Lecture Notes on Quantum Brownian Motion
by

Publisher: arXiv
Number of pages: 92

Description:
Einstein's kinetic theory of the Brownian motion, based upon light water molecules continuously bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. Since the discovery of quantum mechanics it has been a challenge to verify the emergence of diffusion from the Schroedinger equation.

Home page url

Download or read it online for free here:
Download link
(890KB, PDF)

Similar books

Book cover: Physics, Topology, Logic and Computation: A Rosetta StonePhysics, Topology, Logic and Computation: A Rosetta Stone
by - arXiv
There is extensive network of analogies between physics, topology, logic and computation. In this paper we make these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory.
(9784 views)
Book cover: Classical and Quantum Mechanics via Lie algebrasClassical and Quantum Mechanics via Lie algebras
by - arXiv
This book presents classical, quantum, and statistical mechanics in an algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups.
(12230 views)
Book cover: Lectures on Integrable Hamiltonian SystemsLectures on Integrable Hamiltonian Systems
by - arXiv
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.
(7784 views)
Book cover: Mathemathical Methods of Theoretical PhysicsMathemathical Methods of Theoretical Physics
by - Edition Funzl
This book presents the course material for mathemathical methods of theoretical physics intended for an undergraduate audience. The author most humbly presents his own version of what is important for standard courses of contemporary physics.
(9642 views)