Logo

Lecture Notes on Quantum Brownian Motion

Small book cover: Lecture Notes on Quantum Brownian Motion

Lecture Notes on Quantum Brownian Motion
by

Publisher: arXiv
Number of pages: 92

Description:
Einstein's kinetic theory of the Brownian motion, based upon light water molecules continuously bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. Since the discovery of quantum mechanics it has been a challenge to verify the emergence of diffusion from the Schroedinger equation.

Home page url

Download or read it online for free here:
Download link
(890KB, PDF)

Similar books

Book cover: Feynman Diagrams and Differential EquationsFeynman Diagrams and Differential Equations
by - arXiv
The authors review the method of differential equations for the evaluation of D-dimensionally regulated Feynman integrals. After dealing with the technique, we discuss its application in the context of corrections to the photon propagator in QED.
(9507 views)
Book cover: Harmonic Oscillators and Two-by-two Matrices in Symmetry Problems in PhysicsHarmonic Oscillators and Two-by-two Matrices in Symmetry Problems in Physics
by - MDPI AG
With a degree of exaggeration, modern physics is the physics of harmonic oscillators and two-by-two matrices. Indeed, they constitute the basic language for the symmetry problems in physics, and thus the main theme of this journal.
(2385 views)
Book cover: Topics in Spectral TheoryTopics in Spectral Theory
by - McGill University
The subject of these lecture notes is spectral theory of self-adjoint operators and some of its applications to mathematical physics. The main theme is the interplay between spectral theory of self-adjoint operators and classical harmonic analysis.
(5994 views)
Book cover: An Introduction to Topos PhysicsAn Introduction to Topos Physics
by - arXiv
The basic notion of how topoi can be utilized in physics is presented here. Topos and category theory serve as valuable tools which extend our ordinary set-theoretical conceptions, can give rise to new descriptions of quantum physics.
(6656 views)