**Lectures on Field Theory and Ramification Theory**

by Sudhir R. Ghorpade

**Publisher**: Indian Institute of Technology, Bombay 2008**Number of pages**: 36

**Description**:

These are the notes of a series of five lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.

Download or read it online for free here:

**Download link**

(360KB, PDF)

## Similar books

**Class Field Theory**

by

**J. S. Milne**

Class field theory describes the abelian extensions of a local or global field in terms of the arithmetic of the field itself. These notes contain an exposition of abelian class field theory using the algebraic/cohomological approach.

(

**6878**views)

**Generic Polynomials: Constructive Aspects of the Inverse Galois Problem**

by

**C. U. Jensen, A. Ledet, N. Yui**-

**Cambridge University Press**

A clearly written book, which uses exclusively algebraic language (and no cohomology), and which will be useful for every algebraist or number theorist. It is easily accessible and suitable also for first-year graduate students.

(

**10837**views)

**Geometry of the Quintic**

by

**Jerry Shurman**-

**Wiley-Interscience**

The text demonstrates the use of general concepts by applying theorems from various areas in the context of one problem -- solving the quintic. This book helps students to develop connections between the algebra, geometry, and analysis ...

(

**5489**views)

**Lectures On Galois Cohomology of Classical Groups**

by

**M. Kneser**-

**Tata Institute of Fundamental Research**

The main result is the Hasse principle for the one-dimensional Galois cohomology of simply connected classical groups over number fields. For most groups, this result is closely related to other types of Hasse principle.

(

**5563**views)