**The CRing Project: a collaborative open source textbook on commutative algebra**

by Shishir Agrawal, et al.

**Publisher**: CRing Project 2011**Number of pages**: 493

**Description**:

The CRing project is an open source textbook on commutative algebra, aiming to comprehensively cover the foundations needed for algebraic geometry at the level of EGA or SGA. It is a work in progress. The present project aims at producing a work suitable for a beginning undergraduate with a background in elementary abstract algebra.

Download or read it online for free here:

**Download link**

(2.8MB, PDF)

## Similar books

**Introduction to Twisted Commutative Algebras**

by

**Steven V Sam, Andrew Snowden**-

**arXiv**

An expository account of the theory of twisted commutative algebras, which can be thought of as a theory for handling commutative algebras with large groups of linear symmetries. Examples include the coordinate rings of determinantal varieties, etc.

(

**2964**views)

**A Course In Commutative Algebra**

by

**Robert B. Ash**-

**University of Illinois**

This is a text for a basic course in commutative algebra, it should be accessible to those who have studied algebra at the beginning graduate level. The book should help the student reach an advanced level as quickly and efficiently as possible.

(

**12485**views)

**Trends in Commutative Algebra**

by

**Luchezar L. Avramov, at al.**-

**Cambridge University Press**

This book focuses on the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology and representation theory, and combinatorics, with all necessary background provided.

(

**6497**views)

**Commutative Algebra and Noncommutative Algebraic Geometry**

by

**David Eisenbud, et al.**-

**Cambridge University Press**

The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These volumes reflect the lively interaction between the subjects.

(

**768**views)