Logo

Topology of Stratified Spaces

Large book cover: Topology of Stratified Spaces

Topology of Stratified Spaces
by

Publisher: Cambridge University Press
ISBN/ASIN: 052119167X
ISBN-13: 9780521191678
Number of pages: 477

Description:
This book concerns the study of singular spaces using techniques from a variety of areas of geometry and topology and interactions among them. It contains more than a dozen expository papers on topics ranging from intersection homology, L2 cohomology and differential operators, to the topology of algebraic varieties, signatures and characteristic classes, mixed Hodge theory, and elliptic genera of singular complex and real agebraic varieties.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: A Topology PrimerA Topology Primer
by - Technische Universit├Ąt Kaiserslautern
The purpose of this text is to make familiar with the basics of topology, to give a concise introduction to homotopy, and to make students familiar with homology. Readers are expected to have knowledge of analysis and linear algebra.
(7966 views)
Book cover: Topological Groups: Yesterday, Today, TomorrowTopological Groups: Yesterday, Today, Tomorrow
by - MDPI AG
The aim of this book is to describe significant topics in topological group theory in the early 21st century as well as providing some guidance to the future directions topological group theory might take by including some interesting open questions.
(1956 views)
Book cover: Homotopy Theories and Model CategoriesHomotopy Theories and Model Categories
by - University of Notre Dame
This paper is an introduction to the theory of model categories. The prerequisites needed for understanding this text are some familiarity with CW-complexes, chain complexes, and the basic terminology associated with categories.
(5323 views)
Book cover: Notes on the course Algebraic TopologyNotes on the course Algebraic Topology
by - University of Oregon
Contents: Important examples of topological spaces; Constructions; Homotopy and homotopy equivalence; CW-complexes and homotopy; Fundamental group; Covering spaces; Higher homotopy groups; Fiber bundles; Suspension Theorem and Whitehead product; etc.
(5587 views)