**Topology of Stratified Spaces**

by Greg Friedman, et al.

**Publisher**: Cambridge University Press 2011**ISBN/ASIN**: 052119167X**ISBN-13**: 9780521191678**Number of pages**: 477

**Description**:

This book concerns the study of singular spaces using techniques from a variety of areas of geometry and topology and interactions among them. It contains more than a dozen expository papers on topics ranging from intersection homology, L2 cohomology and differential operators, to the topology of algebraic varieties, signatures and characteristic classes, mixed Hodge theory, and elliptic genera of singular complex and real agebraic varieties.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**A Primer on Homotopy Colimits**

by

**Daniel Dugger**-

**University of Oregon**

This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist. Many proofs are avoided, or perhaps just sketched.

(

**6030**views)

**Algebraic and Geometric Topology**

by

**Andrew Ranicki, Norman Levitt, Frank Quinn**-

**Springer**

The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.

(

**11952**views)

**Topology Illustrated**

by

**Peter Saveliev**-

**Intelligent Perception**

The text follows the content of a fairly typical, two-semester, first course in topology. Some of the topics are: the shape of the universe, configuration spaces, digital image analysis, data analysis, social choice, and, of course, calculus.

(

**6268**views)

**Lectures on Etale Cohomology**

by

**J. S. Milne**

These are the notes for a course taught at the University of Michigan in 1989 and 1998. The emphasis is on heuristic arguments rather than formal proofs and on varieties rather than schemes. The notes also discuss the proof of the Weil conjectures.

(

**6006**views)