Logo

A Window into Zeta and Modular Physics

Large book cover: A Window into Zeta and Modular Physics

A Window into Zeta and Modular Physics
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521199301
ISBN-13: 9780521199308
Number of pages: 351

Description:
This book provides an introduction, with applications, to three interconnected mathematical topics: zeta functions in their rich variety; modular forms; vertex operator algebras. Applications of the material to physics are presented.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Funky Mathematical Physics ConceptsFunky Mathematical Physics Concepts
by - UCSD
This text covers some of the unusual or challenging concepts in graduate mathematical physics. This work is meant to be used with any standard text, to help emphasize those things that are most confusing for new students.
(3891 views)
Book cover: Interactions, Strings and Isotopies in Higher Order Anisotropic SuperspacesInteractions, Strings and Isotopies in Higher Order Anisotropic Superspaces
by - arXiv
The monograph summarizes the author's results on the geometry of anholonomic and locally anisotropic interactions. The main subjects are in the theory of field interactions, strings and diffusion processes on spaces, superspaces and isospaces.
(7140 views)
Book cover: An Introduction to Hyperbolic AnalysisAn Introduction to Hyperbolic Analysis
by - arXiv
Contents: The hyperbolic algebra as a bidimensional Clifford algebra; Limits and series in the hyperbolic plane; The hyperbolic Euler formula; Analytic functions in the hyperbolic plane; Multivalued functions on the hyperbolic plane; etc.
(7768 views)
Book cover: Lectures on the Singularities of the Three-Body ProblemLectures on the Singularities of the Three-Body Problem
by - Tata Institute of Fundamental Research
From the table of contents: The differential equations of mechanics; The three-body problem : simple collisions (The n-body problem); The three-body problem: general collision (Stability theory of solutions of differential equations).
(5212 views)