Mathematical Physics: Problems and Solutions

Small book cover: Mathematical Physics: Problems and Solutions

Mathematical Physics: Problems and Solutions

Publisher: Samara University Press
Number of pages: 67

The present issue of the series 'Modern Problems in Mathematical Physics' represents the Proceedings of the Students Training Contest Olympiad in Mathematical and Theoretical Physics and includes the statements and the solutions of the problems offered to the participants.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Classical and Quantum Mechanics via Lie algebrasClassical and Quantum Mechanics via Lie algebras
by - arXiv
This book presents classical, quantum, and statistical mechanics in an algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups.
Book cover: Quantum Spin Systems on Infinite LatticesQuantum Spin Systems on Infinite Lattices
by - arXiv
These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites.
Book cover: Differential Equations of Mathematical PhysicsDifferential Equations of Mathematical Physics
by - arXiv
These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.
Book cover: Invariance Theory, the Heat Equation and the Atiyah-Singer Index TheoremInvariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem
by - Publish or Perish Inc.
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas and the Gauss-Bonnet theorem.