**Determinantal Rings**

by Winfried Bruns, Udo Vetter

**Publisher**: Springer 1988**ISBN/ASIN**: 3540194681**ISBN-13**: 9783540194682**Number of pages**: 244

**Description**:

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Lectures on Torus Embeddings and Applications**

by

**Tadao Oda**-

**Tata Institute of Fundamental Research**

Theory of torus embeddings has find many applications. The point of the theory lies in its ability of translating meaningful algebra-geometric phenomena into very simple statements about the combinatorics of cones in affine space over the reals.

(

**7468**views)

**Lectures on Curves on Rational and Unirational Surfaces**

by

**Masayoshi Miyanishi**-

**Tata Institute of Fundamental Research**

From the table of contents: Introduction; Geometry of the affine line (Locally nilpotent derivations, Algebraic pencils of affine lines, Flat fibrations by the affine line); Curves on an affine rational surface; Unirational surfaces; etc.

(

**7091**views)

**Lectures on Expansion Techniques In Algebraic Geometry**

by

**S.S. Abhyankar**-

**Tata Institute Of Fundamental Research**

From the table of contents: Meromorphic Curves; G-Adic Expansion and Approximate Roots; Characteristic Sequences of a Meromorphic Curve; The Fundamental Theorem and applications; Irreducibility, Newton's Polygon; The Jacobian Problem.

(

**7132**views)

**Lectures on Deformations of Singularities**

by

**Michael Artin**-

**Tata Institute of Fundamental Research**

These notes are based on a series of lectures given in 1973. The lectures are centered about the work of M. Scahlessinger and R. Elkik on infinitesimal deformations. Contents: Formal Theory and Computations; Elkik's Theorems on Algebraization.

(

**7053**views)