Logo

Determinantal Rings by Winfried Bruns, Udo Vetter

Large book cover: Determinantal Rings

Determinantal Rings
by

Publisher: Springer
ISBN/ASIN: 3540194681
ISBN-13: 9783540194682
Number of pages: 244

Description:
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law.

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Geometry UnboundGeometry Unbound
by
This is not a typical math textbook, it does not present full developments of key theorems, but it leaves strategic gaps in the text for the reader to fill in. The original text underlying this book was a set of notes for the Math Olympiad Program.
(11942 views)
Book cover: Lectures on Moduli of CurvesLectures on Moduli of Curves
by - Tata Institute of Fundamental Research
These lecture notes are based on some lectures given in 1980. The object of the lectures was to construct a projective moduli space for stable curves of genus greater than or equal two using Mumford's geometric invariant theory.
(6153 views)
Book cover: Introduction to Algebraic Topology and Algebraic GeometryIntroduction to Algebraic Topology and Algebraic Geometry
by
Introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for algebraically integrable systems and the geometry of quantum field and string theory.
(7649 views)
Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(8737 views)