Logo

Lectures On Some Fixed Point Theorems Of Functional Analysis

Small book cover: Lectures On Some Fixed Point Theorems Of Functional Analysis

Lectures On Some Fixed Point Theorems Of Functional Analysis
by

Publisher: Tata Institute Of Fundamental Research
ISBN/ASIN: B0007J32J0
Number of pages: 147

Description:
The book is concerned with the application of a variety of methods to both non-linear (fixed point) problems and linear (eigenvalue) problems in infinite dimensional spaces. A wide choice of techniques is available for linear problems, and I have usually chosen to use those that give something more than existence theorems.

Download or read it online for free here:
Download link
(580KB, PDF)

Similar books

Book cover: Linear Functional AnalysisLinear Functional Analysis
by - Macquarie University
An introduction to the basic ideas in linear functional analysis: metric spaces; connectedness, completeness and compactness; normed vector spaces; inner product spaces; orthogonal expansions; linear functionals; linear transformations; etc.
(11181 views)
Book cover: Functional Analysis Lecture NotesFunctional Analysis Lecture Notes
by - University of East Anglia
Lecture notes for a 3rd year undergraduate course in functional analysis. By the end of the course, you should have a good understanding of normed vector spaces, Hilbert and Banach spaces, fixed point theorems and examples of function spaces.
(7217 views)
Book cover: Shape Analysis, Lebesgue Integration and Absolute Continuity ConnectionsShape Analysis, Lebesgue Integration and Absolute Continuity Connections
by - arXiv.org
As shape analysis is intricately related to Lebesgue integration and absolute continuity, it is advantageous to have a good grasp of the two notions. We review basic concepts and results about Lebesgue integration and absolute continuity.
(333 views)
Book cover: Jordan Operator AlgebrasJordan Operator Algebras
by - Pitman
Introduction to Jordan algebras of operators on Hilbert spaces and their abstract counterparts. It develops the theory of Jordan operator algebras to a point from which the theory of C*- and von Neumann algebras can be generalized to Jordan algebras.
(9396 views)