
Stochastic Attribute-Value Grammars
by Rob Malouf, Miles Osborne
Publisher: ESSLLI 2001
Number of pages: 159
Description:
This one-week course will provide an introduction to the maximum entropy principle and the construction of maximum entropy models for natural language processing. Through a combination of lectures and, as local computing facilities permit, hands-on lab exercises, students will investigate the implementation of maximum entropy models for attribute-value grammars, including such topics as ambiguity identification, feature selection, and model training and evaluation.
Download or read it online for free here:
Download link
(1.8MB, PDF)
Similar books
Natural Language Processing with Pythonby Steven Bird, Ewan Klein, Edward Loper - O'Reilly Media
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies. With it, you'll learn how to write Python programs that work with large collections of unstructured text.
(20186 views)
Probabilistic Models in the Study of Languageby Roger Levy - University of California, San Diego
A book on the topic of using probabilistic models in scientific work on language ranging from experimental data analysis to corpus work to cognitive modeling. The intended audience is graduate students in linguistics, psychology and computer science.
(8461 views)
Computational Linguisticsby Igor Boshakov, Alexander Gelbukh
The book focuses on the basic set of ideas and facts from the fundamental science necessary for the creation of intelligent language processing tools, without going deeply into the details of specific algorithms or toy systems.
(24066 views)
How Mobile Robots Can Self-organise a Vocabularyby Paul Vogt - Language Science Press
This book presents a series of experiments in which two robots try to solve the symbol grounding problem. The experiments are based on the language game paradigm, and involve real mobile robots that are able to develop a grounded lexicon ...
(7513 views)