Logo

Algebraic L-theory and Topological Manifolds

Large book cover: Algebraic L-theory and Topological Manifolds

Algebraic L-theory and Topological Manifolds
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521055210
Number of pages: 365

Description:
Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: Unsolved Problems in Virtual Knot Theory and Combinatorial Knot TheoryUnsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory
by - arXiv
The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The paper introduces the theory and discusses some problems in that context.
(2653 views)
Book cover: The Hauptvermutung Book: A Collection of Papers on the Topology of ManifoldsThe Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds
by - Springer
The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology.
(5548 views)
Book cover: Ends of ComplexesEnds of Complexes
by - Cambridge University Press
The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of mapping tori and telescopes.
(4972 views)
Book cover: Math That Makes You Go WowMath That Makes You Go Wow
by - Ohio State University
This is an innovative project by a group of Yale undergraduates: A Multi-Disciplinary Exploration of Non-Orientable Surfaces. The course is designed to be included as a short segment in a late middle school or early high school math course.
(10483 views)