**Lectures on Geodesics in Riemannian Geometry**

by M. Berger

**Publisher**: Tata Institute of Fundamental Research 1965**Number of pages**: 317

**Description**:

The main topic of these notes is geodesics. Our aim is 1) to give a fairly complete treatment of the foundations of Riemannian geometry through the tangent bundle and the geodesic flow on it and 2) to give global results for Riemannian manifolds which are subject to geometric conditions of various types; these conditions involve essentially geodesics.

Download or read it online for free here:

**Download link**

(1.5MB, PDF)

## Similar books

**Riemannian Geometry**

by

**Ilkka Holopainen, Tuomas Sahlsten**

Based on the lecture notes on differential geometry. From the contents: Differentiable manifolds, a brief review; Riemannian metrics; Connections; Geodesics; Curvature; Jacobi fields; Curvature and topology; Comparison geometry; The sphere theorem.

(

**3895**views)

**Complex Analysis on Riemann Surfaces**

by

**Curtis McMullen**-

**Harvard University**

Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.

(

**9468**views)

**Riemannian Submanifolds: A Survey**

by

**Bang-Yen Chen**-

**arXiv**

Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.

(

**3287**views)

**A Sampler of Riemann-Finsler Geometry**

by

**D. Bao, R. Bryant, S. Chern, Z. Shen**-

**Cambridge University Press**

Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles.

(

**9098**views)