**Lower K- and L-theory**

by Andrew Ranicki

**Publisher**: Cambridge University Press 2001**ISBN/ASIN**: 0521438012**ISBN-13**: 9780521438018**Number of pages**: 177

**Description**:

This is the first treatment in book form of the applications of the lower K- and L-groups (which are the components of the Grothendieck groups of modules and quadratic forms over polynomial extension rings) to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. The author uses only elementary constructions and gives a full algebraic account of the groups involved.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory**

by

**R. Fenn, D.P. Ilyutko, L.H. Kauffman, V.O. Manturov**-

**arXiv**

The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The paper introduces the theory and discusses some problems in that context.

(

**3344**views)

**Diffeomorphisms of Elliptic 3-Manifolds**

by

**S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein**-

**arXiv**

The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.

(

**5386**views)

**Math That Makes You Go Wow**

by

**M. Boittin, E. Callahan, D. Goldberg, J. Remes**-

**Ohio State University**

This is an innovative project by a group of Yale undergraduates: A Multi-Disciplinary Exploration of Non-Orientable Surfaces. The course is designed to be included as a short segment in a late middle school or early high school math course.

(

**11327**views)

**A Primer on Mapping Class Groups**

by

**Benson Farb, Dan Margalit**-

**Princeton University Press**

Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained.

(

**7436**views)