**Lower K- and L-theory**

by Andrew Ranicki

**Publisher**: Cambridge University Press 2001**ISBN/ASIN**: 0521438012**ISBN-13**: 9780521438018**Number of pages**: 177

**Description**:

This is the first treatment in book form of the applications of the lower K- and L-groups (which are the components of the Grothendieck groups of modules and quadratic forms over polynomial extension rings) to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. The author uses only elementary constructions and gives a full algebraic account of the groups involved.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Geometric Topology: Localization, Periodicity and Galois Symmetry**

by

**Dennis Sullivan**-

**Springer**

In 1970, Sullivan circulated this set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts. The notes remain worth reading for the fresh picture they provide for geometric topology.

(

**4421**views)

**Exotic Homology Manifolds**

by

**Frank Quinn, Andrew Ranicki**

Homology manifolds were developed in the 20th century to give a precise setting for Poincare's ideas on duality. They are investigated using algebraic and geometric methods. This volume is the proceedings of a workshop held in 2003.

(

**4661**views)

**High-dimensional Knot Theory**

by

**Andrew Ranicki**-

**Springer**

This book is an introduction to high-dimensional knot theory. It uses surgery theory to provide a systematic exposition, and it serves as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.

(

**7583**views)

**Notes on Basic 3-Manifold Topology**

by

**Allen Hatcher**

These pages are really just an early draft of the initial chapters of a real book on 3-manifolds. The text does contain a few things that aren't readily available elsewhere, like the Jaco-Shalen/Johannson torus decomposition theorem.

(

**5449**views)