Logo

Geometric Topology: Localization, Periodicity and Galois Symmetry

Large book cover: Geometric Topology: Localization, Periodicity and Galois Symmetry

Geometric Topology: Localization, Periodicity and Galois Symmetry
by

Publisher: Springer
ISBN/ASIN: 140203511X
ISBN-13: 9781402035111
Number of pages: 296

Description:
In 1970, Sullivan circulated a set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts that have had a major influence on the development of topology. The notes remain worth reading for the boldness of their ideas, the clear mastery of available structure they command, and the fresh picture they provide for geometric topology.

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: Exotic Homology ManifoldsExotic Homology Manifolds
by
Homology manifolds were developed in the 20th century to give a precise setting for Poincare's ideas on duality. They are investigated using algebraic and geometric methods. This volume is the proceedings of a workshop held in 2003.
(6641 views)
Book cover: Notes on String TopologyNotes on String Topology
by - arXiv
This paper is an exposition of the new subject of String Topology. We present an introduction to this exciting new area, as well as a survey of some of the latest developments, and our views about future directions of research.
(7833 views)
Book cover: An Introduction to High Dimensional KnotsAn Introduction to High Dimensional Knots
by - arXiv
This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.
(3884 views)
Book cover: Knot DiagrammaticsKnot Diagrammatics
by - arXiv
This paper is a survey of knot theory and invariants of knots and links from the point of view of categories of diagrams. The topics range from foundations of knot theory to virtual knot theory and topological quantum field theory.
(4240 views)