**Mathematical Theory of Scattering Resonances**

by Semyon Dyatlov, Maciej Zworski

**Publisher**: MIT 2018**Number of pages**: 552

**Description**:

Contents: Scattering resonances in dimension one; Resonances for potentials in odd dimensions; Black box scattering in Rn; The method of complex scaling; Perturbation theory for resonances; Resolvent estimates in semiclassical scattering; Chaotic scattering; etc.

Download or read it online for free here:

**Download link**

(9.6MB, PDF)

## Similar books

**Introduction to the Numerical Integration of PDEs**

by

**B. Piette**-

**University of Durham**

In these notes, we describe the design of a small C++ program which solves numerically the sine-Gordon equation. The program is build progressively to make it multipurpose and easy to modify to solve any system of partial differential equations.

(

**7986**views)

**An Algorithm for Constructing Lyapunov Functions**

by

**Sigurdur Freyr Hafstein**

In this monograph we develop an algorithm for constructing Lyapunov functions for arbitrary switched dynamical systems, possessing a uniformly asymptotically stable equilibrium. We give examples of Lyapunov functions constructed by our method.

(

**4933**views)

**Solving PDEs in Python**

by

**Hans Petter Langtangen, Anders Logg**-

**Springer**

This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, it guides readers through the essential steps to quickly solving a PDE in FEniCS.

(

**1264**views)

**Introduction to Partial Differential Equations**

by

**John Douglas Moore**-

**UCSB**

The author develops the most basic ideas from the theory of partial differential equations, and apply them to the simplest models arising from physics. He presents some of the mathematics that can be used to describe the vibrating circular membrane.

(

**8721**views)