Logo

Think Complexity: Complexity Science and Computational Modeling

Large book cover: Think Complexity: Complexity Science and Computational Modeling

Think Complexity: Complexity Science and Computational Modeling
by

Publisher: Green Tea Press
ISBN/ASIN: 1449314635
Number of pages: 146

Description:
This book is about complexity science, data structures and algorithms, intermediate programming in Python, and the philosophy of science. The book focuses on discrete models, which include graphs, cellular automata, and agent-based models. They are often characterized by structure, rules and transitions rather than by equations.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Specifying SystemsSpecifying Systems
by - Addison-Wesley Professional
This book shows how to write unambiguous specifications of complex computer systems. It provides a complete reference manual for the TLA+, the language developed by the author for writing simple and elegant specifications of algorithms and protocols.
(8639 views)
Book cover: Complexity and ComputationComplexity and Computation
by - Green Tea Press
This book is about data structures and algorithms, intermediate programming in Python, complexity science and the philosophy of science. The book covers Graphs, Analysis of algorithms, Scale-free networks, Cellular Automata, Agent-based models, etc.
(10574 views)
Book cover: Measure-Preserving SystemsMeasure-Preserving Systems
by - University of North Carolina
These notes provide an introduction to the subject of measure-preserving dynamical systems, discussing the dynamical viewpoint; how and from where measure-preserving systems arise; the construction of measures and invariant measures; etc.
(6109 views)
Book cover: Communication Complexity (for Algorithm Designers)Communication Complexity (for Algorithm Designers)
by - Stanford University
The two biggest goals of the course are: 1. Learn several canonical problems that have proved the most useful for proving lower bounds; 2. Learn how to reduce lower bounds for fundamental algorithmic problems to communication complexity lower bounds.
(891 views)