Logo

Think Complexity: Complexity Science and Computational Modeling

Large book cover: Think Complexity: Complexity Science and Computational Modeling

Think Complexity: Complexity Science and Computational Modeling
by

Publisher: Green Tea Press
ISBN/ASIN: 1449314635
Number of pages: 146

Description:
This book is about complexity science, data structures and algorithms, intermediate programming in Python, and the philosophy of science. The book focuses on discrete models, which include graphs, cellular automata, and agent-based models. They are often characterized by structure, rules and transitions rather than by equations.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: P, NP, and NP-Completeness: The Basics of Complexity TheoryP, NP, and NP-Completeness: The Basics of Complexity Theory
by - Cambridge University Press
The main focus of the current book is on the P-vs-NP Question and the theory of NP-completeness. Additional topics that are covered include the treatment of the general notion of a reduction between computational problems.
(8578 views)
Book cover: Introduction to Computational ComplexityIntroduction to Computational Complexity
by
Lecture notes for a graduate course on computational complexity taught at the University of Washington. Alternating Turing machines are introduced very early, and deterministic and nondeterministic Turing machines treated as special cases.
(8922 views)
Book cover: Complexity TheoryComplexity Theory
by
This set of notes gives the broad picture of modern complexity theory, defines the basic complexity classes, gives some examples of each complexity class and proves the most standard relations. The author emphasizes the ideas involved in the proofs.
(15514 views)
Book cover: Communication Complexity (for Algorithm Designers)Communication Complexity (for Algorithm Designers)
by - Stanford University
The two biggest goals of the course are: 1. Learn several canonical problems that have proved the most useful for proving lower bounds; 2. Learn how to reduce lower bounds for fundamental algorithmic problems to communication complexity lower bounds.
(5361 views)