Logo

Category Theory and Functional Programming

Small book cover: Category Theory and Functional Programming

Category Theory and Functional Programming
by

Publisher: University of St. Andrews
Number of pages: 99

Description:
This text is intended to provide an introduction to Category Theory that ties into Haskell and functional programming as a source of examples and applications. Topics covered: The definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases of these, adjunctions, freeness and presentations as categorical constructs, monads and Kleisli arrows, recursion with categorical constructs.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Category Theory for Computing ScienceCategory Theory for Computing Science
by - Prentice Hall
This book is a textbook in basic category theory, written specifically to be read by researchers and students in computing science. We expound the constructions basic to category theory in the context of applications to computing science.
(3799 views)
Book cover: Abelian Categories: an Introduction to the Theory of FunctorsAbelian Categories: an Introduction to the Theory of Functors
by - Harper and Row
From the table of contents: Fundamentals (Contravariant functors and dual categories); Fundamentals of Abelian categories; Special functors and subcategories; Metatheorems; Functor categories; Injective envelopes; Embedding theorems.
(6869 views)
Book cover: Notes on Categories and GroupoidsNotes on Categories and Groupoids
by - Van Nostrand Reinhold
A self-contained account of the elementary theory of groupoids and some of its uses in group theory and topology. Category theory appears as a secondary topic whenever it is relevant to the main issue, and its treatment is by no means systematic.
(9090 views)
Book cover: Category TheoryCategory Theory
- Wikibooks
This book is an introduction to category theory, written for those who have some understanding of one or more branches of abstract mathematics, such as group theory, analysis or topology. It contains examples drawn from various branches of math.
(6497 views)