Logo

Category Theory and Functional Programming

Small book cover: Category Theory and Functional Programming

Category Theory and Functional Programming
by

Publisher: University of St. Andrews
Number of pages: 99

Description:
This text is intended to provide an introduction to Category Theory that ties into Haskell and functional programming as a source of examples and applications. Topics covered: The definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases of these, adjunctions, freeness and presentations as categorical constructs, monads and Kleisli arrows, recursion with categorical constructs.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Higher Topos TheoryHigher Topos Theory
by - Princeton University Press
Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.
(8740 views)
Book cover: Seminar on Triples and Categorical Homology TheorySeminar on Triples and Categorical Homology Theory
by - Springer
This volume concentrates a) on the concept of 'triple' or standard construction with special reference to the associated 'algebras', and b) on homology theories in general categories, based upon triples and simplicial methods.
(7905 views)
Book cover: Banach Modules and Functors on Categories of Banach SpacesBanach Modules and Functors on Categories of Banach Spaces
by - Marcel Dekker Inc
This book is the final outgrowth of a sequence of seminars about functors on categories of Banach spaces (held 1971 - 1975) and several doctoral dissertations. It has been written for readers with a general background in functional analysis.
(6476 views)
Book cover: Higher Operads, Higher CategoriesHigher Operads, Higher Categories
by - arXiv
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.
(8618 views)