Logo

Harmonic Analysis by Russell Brown

Small book cover: Harmonic Analysis

Harmonic Analysis
by

Publisher: University of Kentucky
Number of pages: 191

Description:
These notes are intended for a course in harmonic analysis on Rn which was offered to graduate students at the University of Kentucky in Spring of 2001. The background for this course is a course in real analysis which covers measure theory and the basic facts of life related to Lp spaces.

Home page url

Download or read it online for free here:
Download link
(750KB, PDF)

Similar books

Book cover: Spherical Harmonics in p DimensionsSpherical Harmonics in p Dimensions
by - arXiv
The authors prepared this booklet in order to make several useful topics from the theory of special functions, in particular the spherical harmonics and Legendre polynomials for any dimension, available to physics or mathematics undergraduates.
(3969 views)
Book cover: Lectures on Mean Periodic FunctionsLectures on Mean Periodic Functions
by - Tata Institute of Fundamental Research
Mean periodic functions are a generalization of periodic functions. The book considers questions such as Fourier-series, harmonic analysis, the problems of uniqueness, approximation and quasi-analyticity, as problems on mean periodic functions.
(4087 views)
Book cover: Linear Partial Differential Equations and Fourier TheoryLinear Partial Differential Equations and Fourier Theory
by - Cambridge University Press
Textbook for an introductory course on linear partial differential equations and boundary value problems. It also provides introduction to basic Fourier analysis and functional analysis. Written for third-year undergraduates in mathematical sciences.
(21528 views)
Book cover: Lectures on Topics in Mean Periodic Functions and the Two-Radius TheoremLectures on Topics in Mean Periodic Functions and the Two-Radius Theorem
by - Tata Institute of Fundamental Research
Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem.
(3993 views)