Logo

Natural Product Xn on matrices

Large book cover: Natural Product Xn on matrices

Natural Product Xn on matrices
by

Publisher: arXiv
ISBN/ASIN: B0076RSHX2
Number of pages: 342

Description:
In this book the authors introduce a new type of product on matrices called the natural product Xn. This is an extension of product carried out in the case or row matrices of the same order. Further, when two column matrices of same order can be added, nothing prevents one from multiplying them. This sort of multiplication which is natural is defined as natural product Xn on matrices.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Download mirrors:
Mirror 1
Mirror 2

Similar books

Book cover: The Matrix CookbookThe Matrix Cookbook
by
The Matrix Cookbook is a free desktop reference on matrix identities, inequalities, approximations and relations useful for different fields such as machine learning, statistics, quantum mechanics, engeneering, chemistry.
(16132 views)
Book cover: Random Matrix Theory, Interacting Particle Systems and Integrable SystemsRandom Matrix Theory, Interacting Particle Systems and Integrable Systems
by - Cambridge University Press
Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications. The book contains articles on random matrix theory such as integrability and free probability theory.
(3559 views)
Book cover: Matrix Analysis and AlgorithmsMatrix Analysis and Algorithms
by - CaltechAUTHORS
An introduction to matrix analysis, and to the basic algorithms of numerical linear algebra. Contents: Vector and Matrix Analysis; Matrix Factorisations; Stability and Conditioning; Complexity of Algorithms; Systems of Linear Equations; etc.
(4022 views)
Book cover: Matrix AnalysisMatrix Analysis
by - Rice University
Matrix theory is a language for representing and analyzing multivariable systems. These notes will demonstrate the role of matrices in the modeling of physical systems and the power of matrix theory in the analysis and synthesis of such systems.
(8274 views)