Logo

Natural Product Xn on matrices

Large book cover: Natural Product Xn on matrices

Natural Product Xn on matrices
by

Publisher: arXiv
ISBN/ASIN: B0076RSHX2
Number of pages: 342

Description:
In this book the authors introduce a new type of product on matrices called the natural product Xn. This is an extension of product carried out in the case or row matrices of the same order. Further, when two column matrices of same order can be added, nothing prevents one from multiplying them. This sort of multiplication which is natural is defined as natural product Xn on matrices.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Download mirrors:
Mirror 1
Mirror 2

Similar books

Book cover: Random Matrix Theory, Interacting Particle Systems and Integrable SystemsRandom Matrix Theory, Interacting Particle Systems and Integrable Systems
by - Cambridge University Press
Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications. The book contains articles on random matrix theory such as integrability and free probability theory.
(1333 views)
Book cover: Introduction to Matrix AlgebraIntroduction to Matrix Algebra
by - University of South Florida
This book is written primarily for students who are at freshman level or do not take a full course in Linear/Matrix Algebra, or wanting a contemporary and applied approach to Matrix Algebra. Eight chapters of the book are available for free.
(11362 views)
Book cover: Matrix Analysis and AlgorithmsMatrix Analysis and Algorithms
by - CaltechAUTHORS
An introduction to matrix analysis, and to the basic algorithms of numerical linear algebra. Contents: Vector and Matrix Analysis; Matrix Factorisations; Stability and Conditioning; Complexity of Algorithms; Systems of Linear Equations; etc.
(1505 views)
Book cover: MatricesMatrices
by - University of Illinois at Chicago
From the table of contents: Domains, Modules and Matrices; Canonical Forms for Similarity; Functions of Matrices and Analytic Similarity; Inner product spaces; Elements of Multilinear Algebra; Nonnegative matrices; Convexity.
(8755 views)