Logo

Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory

Small book cover: Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory

Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory
by

Publisher: American Mathematical Society
Number of pages: 85

Description:
We consider some mathematical questions about Boltzmann equations for quantum particles, relativistic or non relativistic. Relevant particular cases such as Bose, Bose-Fermi, and photon-electron gases are studied. We also consider some simplifications such as the isotropy of the distribution functions and the asymptotic limits.

Home page url

Download or read it online for free here:
Download link
(560KB, PDF)

Similar books

Book cover: Statistical Physics IIStatistical Physics II
by - University of Guelph
From the table of contents: Review of thermodynamics; Statistical mechanics of isolated systems; Statistical mechanics of interacting systems; Information theory; Paramagnetism; Quantum statistics of ideal gases; Black-body radiation.
(5608 views)
Book cover: Thermal and Statistical PhysicsThermal and Statistical Physics
by - Princeton University Press
A text on two related subjects: thermodynamics and statistical mechanics. Computer simulations and numerical calculations are used in a variety of contexts. The book brings some of the recent advances in research into the undergraduate curriculum.
(10746 views)
Book cover: Statistical PhysicsStatistical Physics
by - University of Cambridge
This is an introductory course on Statistical Mechanics and Thermodynamics given to final year undergraduates. Topics: Fundamentals of Statistical Mechanics; Classical Gases; Quantum Gases; Classical Thermodynamics; Phase Transitions.
(7083 views)
Book cover: Lecture Notes in Statistical Mechanics and MesoscopicsLecture Notes in Statistical Mechanics and Mesoscopics
by - arXiv
These are notes for quantum and statistical mechanics courses. Topics covered: master equations; non-equilibrium processes; fluctuation theorems; linear response theory; adiabatic transport; the Kubo formalism; scattering approach to mesoscopics.
(4278 views)