Advanced Topics in Probability

Advanced Topics in Probability

Publisher: New York University
Number of pages: 203

Topics: Brownian Motion; Continuous Parameter Martingales; Diffusion Processes; Weak convergence and Compactness; Stochastic Integrals and Ito's formula; Markov Processes, Kolmogorov's equations; Stochastic Differential Equations; Existence and Uniqueness; Girsanov Formula; Random Time Change; The two dimensional case; The General Case; Limit Theorems; Reflected Brownian Motion; Reflection in higher dimensions; Invariant Measures.

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Lectures on Measure Theory and ProbabilityLectures on Measure Theory and Probability
by - Tata institute of Fundamental Research
Measure Theory (Sets and operations on sets, Classical Lebesgue and Stieltjes measures, Lebesgue integral); Probability (Function of a random variable, Conditional probabilities, Central Limit Problem, Random Sequences and Convergence Properties).
Book cover: A History Of The Mathematical Theory Of ProbabilityA History Of The Mathematical Theory Of Probability
by - Kessinger Publishing, LLC
History of the probability theory from the time of Pascal to that of Laplace (1865). Todhunter gave a close account of the difficulties involved and the solutions offered by each investigator. His studies were thorough and fully documented.
Book cover: Almost None of the Theory of Stochastic ProcessesAlmost None of the Theory of Stochastic Processes
by - Carnegie Mellon University
Text for a second course in stochastic processes. It is assumed that you have had a first course on stochastic processes, using elementary probability theory. You will study stochastic processes within the framework of measure-theoretic probability.
Book cover: Probability for FinanceProbability for Finance
by - BookBoon
The book is intended to be a technical support for students in finance. Topics: Probability spaces and random variables; Moments of a random variable; Usual probability distributions in financial models; Conditional expectations and Limit theorems.