Logo

Linearization via the Lie Derivative

Small book cover: Linearization via the Lie Derivative

Linearization via the Lie Derivative
by

Publisher: American Mathematical Society
Number of pages: 64

Description:
The standard proof of the Grobman--Hartman linearization theorem for a flow at a hyperbolic rest point proceeds by first establishing the analogous result for hyperbolic fixed points of local diffeomorphisms. In this exposition we present a simple direct proof that avoids the discrete case altogether.

Download or read it online for free here:
Download link
(420KB, PDF)

Similar books

Book cover: A Friendly Introduction to Differential EquationsA Friendly Introduction to Differential Equations
by
The book covers: The Laplace Transform, Systems of Homogeneous Linear Differential Equations, First and Higher Orders Differential Equations, Extended Methods of First and Higher Orders Differential Equations, Applications of Differential Equations.
(10187 views)
Book cover: Nonlinear Analysis and Differential EquationsNonlinear Analysis and Differential Equations
by - University of Utah
The intent of this set of notes is to present several of the important existence theorems for solutions of various types of problems associated with differential equations and provide qualitative and quantitative descriptions of solutions.
(12595 views)
Book cover: Ordinary Differential Equations and Dynamical SystemsOrdinary Differential Equations and Dynamical Systems
by - Universitaet Wien
This book provides an introduction to ordinary differential equations and dynamical systems. We start with some simple examples of explicitly solvable equations. Then we prove the fundamental results concerning the initial value problem.
(15298 views)
Book cover: Examples of differential equations, with rules for their solutionExamples of differential equations, with rules for their solution
by - Boston, Ginn & Company
This work has been prepared to meet a want in a course on the subject, arranged for advanced students in Physics. It could be used in connection with lectures on the theory of Differential Equations and the derivation of the methods of solution.
(7818 views)