**Algebraic Equations**

by George Ballard Mathews

**Publisher**: Cambridge University Press 1907**ISBN/ASIN**: B005GAI48Y**Number of pages**: 88

**Description**:

This tract is intended to give an account of the theory of equations according to the ideas of Galois. The conspicuous merit of this method is that it analyzes, so far as exact algebraical processes permit, the set of roots possessed by any given numerical equation.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Lectures On Galois Cohomology of Classical Groups**

by

**M. Kneser**-

**Tata Institute of Fundamental Research**

The main result is the Hasse principle for the one-dimensional Galois cohomology of simply connected classical groups over number fields. For most groups, this result is closely related to other types of Hasse principle.

(

**4777**views)

**Geometry of the Quintic**

by

**Jerry Shurman**-

**Wiley-Interscience**

The text demonstrates the use of general concepts by applying theorems from various areas in the context of one problem -- solving the quintic. This book helps students to develop connections between the algebra, geometry, and analysis ...

(

**4740**views)

**The Elements of the Theory of Algebraic Numbers**

by

**Legh Wilber Reid**-

**The Macmillan company**

It has been my endeavor in this book to lead by easy stages a reader, entirely unacquainted with the subject, to an appreciation of some of the fundamental conceptions in the general theory of algebraic numbers. Many numerical examples are given.

(

**4652**views)

**Lectures on Field Theory and Ramification Theory**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.

(

**5215**views)