Logo

A Course in Universal Algebra

Large book cover: A Course in Universal Algebra

A Course in Universal Algebra
by

Publisher: Springer-Verlag
ISBN/ASIN: 0387905782
ISBN-13: 9780387905785
Number of pages: 331

Description:
This text is not intended to be encyclopedic; rather, a few themes central to universal algebra have been developed suficiently to bring the reader to the brink of current research. The choice of topics most certainly reflects the authors' interests: a brief but substantial introduction to lattices, the most general and fundamental notions of universal algebra, a careful development of Boolean algebras, discriminator varieties, the introduction to some basic concepts, tools, and results of model theory.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: An Introduction to Nonassociative AlgebrasAn Introduction to Nonassociative Algebras
by - Project Gutenberg
Concise study presents in a short space some of the important ideas and results in the theory of nonassociative algebras, with particular emphasis on alternative and (commutative) Jordan algebras. Written as an introduction for graduate students.
(8427 views)
Book cover: Smarandache Near-ringsSmarandache Near-rings
by - American Research Press
Near-rings are one of the generalized structures of rings. This is a book on Smarandache near-rings where the Smarandache analogues of the near-ring concepts are developed. The reader is expected to have a background in algebra and in near-rings.
(7454 views)
Book cover: Noncommutative RingsNoncommutative Rings
by
From the table of contents: Morita equivalence (Hom, Bimodules, Projective modules ...); Localization and Goldie's theorem; Central simple algebras and the Brauer group; Maximal orders; Irreducible representations; Growth of algebras.
(5908 views)
Book cover: Algebraic LogicAlgebraic Logic
by
Part I of the book studies algebras which are relevant to logic. Part II deals with the methodology of solving logic problems by (i) translating them to algebra, (ii) solving the algebraic problem, and (iii) translating the result back to logic.
(10356 views)