Logo

A Course in Universal Algebra

Large book cover: A Course in Universal Algebra

A Course in Universal Algebra
by

Publisher: Springer-Verlag
ISBN/ASIN: 0387905782
ISBN-13: 9780387905785
Number of pages: 331

Description:
This text is not intended to be encyclopedic; rather, a few themes central to universal algebra have been developed suficiently to bring the reader to the brink of current research. The choice of topics most certainly reflects the authors' interests: a brief but substantial introduction to lattices, the most general and fundamental notions of universal algebra, a careful development of Boolean algebras, discriminator varieties, the introduction to some basic concepts, tools, and results of model theory.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Hopf Algebras, Quantum Groups and Yang-Baxter EquationsHopf Algebras, Quantum Groups and Yang-Baxter Equations
by - MDPI AG
Various aspects of the Yang-Baxter equation, related algebraic structures, and applications are presented. The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed.
(1657 views)
Book cover: Graduate AlgebraGraduate Algebra
by - Northwestern University
Contents: Groups; Group actions on sets; Normal series; Ring theory; Modules; Hom and tensor; Field theory; Galois theory; Applications of Galois theory; Infinite extensions; Categories; Multilinear algebra; More ring theory; Localization; etc.
(10100 views)
Book cover: Lectures on Quadratic FormsLectures on Quadratic Forms
by - Tata Institute of Fundamental Research
From the table of contents: Vector groups and linear inequalities (Vector groups, Lattices, Characters, Diophantine approximations); Reduction of positive quadratic forms; Indefinite quadratic forms; Analytic theory of Indefinite quadratic forms.
(7894 views)
Book cover: Algebraic InvariantsAlgebraic Invariants
by - J. Wiley & Sons
This introduction to the classical theory of invariants of algebraic forms is divided into three parts: linear transformations; algebraic properties of invariants and covariants; symbolic notation of Aronhold and Clebsch.
(6930 views)