Lectures On Galois Cohomology of Classical Groups
by M. Kneser
Publisher: Tata Institute of Fundamental Research 1969
Number of pages: 212
Description:
The main result is the Hasse principle for the one-dimensional Galois cohomology of simply connected classical groups over number fields. For most groups, this result is closely related to other types of Hasse principle. Some of these are well known, in particular those for quadratic forms.
Download or read it online for free here:
Download link
(690KB, PDF)
Similar books

by Emil Artin - University of Notre Dame
The book deals with linear algebra, including fields, vector spaces, homogeneous linear equations, and determinants, extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, and more.
(4790 views)

by George Ballard Mathews - Cambridge University Press
This book is intended to give an account of the theory of equations according to the ideas of Galois. This method analyzes, so far as exact algebraical processes permit, the set of roots possessed by any given numerical equation.
(9429 views)

by Mark Reeder - Boston College
From the table of contents: Basic ring theory, polynomial rings; Finite fields; Extensions of rings and fields; Computing Galois groups of polynomials; Galois groups and prime ideals; Cyclotomic extensions and abelian numbers.
(8117 views)

by Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(9389 views)