Logo

Basic Analysis Gently Done: Topological Vector Spaces

Small book cover: Basic Analysis Gently Done: Topological Vector Spaces

Basic Analysis Gently Done: Topological Vector Spaces
by

Publisher: King's College, London
Number of pages: 129

Description:
These notes are based on lectures given at King's College London (as part of the Mathematics MSc program). The approach here is to discuss topological vector spaces - with normed spaces considered as special cases. Contents: Topological Spaces; Nets; Product Spaces; Separation; Vector Spaces; Topological Vector Spaces; Locally Convex Topological Vector Spaces; Banach Spaces; The Dual Space of a Normed Space; Frechet Spaces.

Download or read it online for free here:
Read online
(online reading)

Similar books

Book cover: Operators on Hilbert SpaceOperators on Hilbert Space
by - King's College London
These are notes for a King's College course to fourth year undergraduates and MSc students. They cover the theoretical development of operators on Hilbert space up to the spectral theorem for bounded selfadjoint operators.
(6462 views)
Book cover: Distribution Theory (Generalized Functions)Distribution Theory (Generalized Functions)
by
From the table of contents: Introduction; The spaces S and S'; The spaces D and D'; The Fourier transform; Convolution; Fourier-Laplace Transform; Structure Theorem for Distributions; Partial Differential Equations; and more.
(7614 views)
Book cover: Integral OperatorsIntegral Operators
by - BookBoon
Examples of Hilbert-Smith operators and other types of integral operators, Hilbert Schmidt norm, Volterra integral operator, Cauchy-Schwarz inequality, Hoelder inequality, iterated kernels, Hermitian kernel, and much more.
(8610 views)
Book cover: Introduction to Functional AnalysisIntroduction to Functional Analysis
by - University of Leeds
Contents: Fourier Series; Basics of Linear Spaces; Orthogonality; Fourier Analysis; Duality of Linear Spaces; Operators; Spectral Theory; Compactness; The spectral theorem for compact normal operators; Applications to integral equations; etc.
(9386 views)