Logo

C*-algebras by John Erdos

Small book cover: C*-algebras

C*-algebras
by

Publisher: King's College, London
Number of pages: 51

Description:
These notes form an introductory account of C*-algebras. Some results on more general commutative Banach algebras, whose proofs require little extra effort, are included. There are accounts of two applications of the commutative theory: the C*-algebra approach to the spectral theorem for bounded normal operators on Hilbert space and a brief introduction to the ideas of abstract harmonic analysis.

Download or read it online for free here:
Download link
(280KB, PDF)

Similar books

Book cover: Global Analysis: Functional Analysis ExamplesGlobal Analysis: Functional Analysis Examples
by - BookBoon
From the table of contents: Metric spaces; Topology; Continuous mappings; Sequences; Semi-continuity; Connected sets, differentiation; Normed vector spaces and integral operators; Differentiable mappings; Complete metric spaces; and more.
(13561 views)
Book cover: Special Course in Functional Analysis: (Non-)Commutative TopologySpecial Course in Functional Analysis: (Non-)Commutative Topology
by - Aalto TKK
In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.
(11935 views)
Book cover: Basic Analysis Gently Done: Topological Vector SpacesBasic Analysis Gently Done: Topological Vector Spaces
by - King's College, London
These notes are based on lectures given as part of a mathematics MSc program. The approach here is to discuss topological vector spaces - with normed spaces considered as special cases. Contents: Topological Spaces; Nets; Product Spaces; etc.
(11345 views)
Book cover: Nonlinear Functional AnalysisNonlinear Functional Analysis
by - University of Vienna
This manuscript provides a brief introduction to nonlinear functional analysis. As an application we consider partial differential equations and prove existence and uniqueness for solutions of the stationary Navier-Stokes equation.
(15282 views)