C*-algebras
by John Erdos
Publisher: King's College, London 2003
Number of pages: 51
Description:
These notes form an introductory account of C*-algebras. Some results on more general commutative Banach algebras, whose proofs require little extra effort, are included. There are accounts of two applications of the commutative theory: the C*-algebra approach to the spectral theorem for bounded normal operators on Hilbert space and a brief introduction to the ideas of abstract harmonic analysis.
Download or read it online for free here:
Download link
(280KB, PDF)
Similar books

by Ivan F Wilde
From the table of contents: Introduction; The spaces S and S'; The spaces D and D'; The Fourier transform; Convolution; Fourier-Laplace Transform; Structure Theorem for Distributions; Partial Differential Equations; and more.
(10868 views)

by Javier Bernal - arXiv.org
As shape analysis is intricately related to Lebesgue integration and absolute continuity, it is advantageous to have a good grasp of the two notions. We review basic concepts and results about Lebesgue integration and absolute continuity.
(3909 views)

by Vaughan F. R. Jones - UC Berkeley Mathematics
The purpose of these notes is to provide a rapid introduction to von Neumann algebras which gets to the examples and active topics with a minimum of technical baggage. The philosophy is to lavish attention on a few key results and examples.
(13639 views)

by Ville Turunen - Aalto TKK
In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.
(11142 views)