Logo

Lectures on Deformations of Singularities

Small book cover: Lectures on Deformations of Singularities

Lectures on Deformations of Singularities
by

Publisher: Tata Institute of Fundamental Research
ISBN/ASIN: B007F7DZS0
Number of pages: 110

Description:
These notes are based on a series of lectures given at the Tata Institute in January-February, 1973. The lectures are centered about the work of M. Scahlessinger and R. Elkik on infinitesimal deformations. Contents: Formal Theory and Computations; Elkik's Theorems on Algebraization.

Download or read it online for free here:
Download link
(550KB, PDF)

Similar books

Book cover: Lectures on Siegel's Modular FunctionsLectures on Siegel's Modular Functions
by - Tata Institute of Fundamental Research
Contents: Modular Group of Degree n; Symplectic group of degree n; Reduction Theory of Positive Definite Quadratic Forms; Fundamental Domain of the Modular Group of Degree n; Modular Forms of Degree n; Algebraic dependence of modular forms; etc.
(6313 views)
Book cover: Classical Algebraic Geometry: A Modern ViewClassical Algebraic Geometry: A Modern View
by - Cambridge University Press
The main purpose of the present treatise is to give an account of some of the topics in algebraic geometry which while having occupied the minds of many mathematicians in previous generations have fallen out of fashion in modern times.
(4069 views)
Book cover: Multiplication of Vectors and Structure of 3D Euclidean SpaceMultiplication of Vectors and Structure of 3D Euclidean Space
by - viXra
This text is a motivational survey of geometric algebra in 3D. The intention here was to use simple examples and reader is referred to the independent problem solving. The active reading of text is recommended, with paper and pencil in hand.
(1381 views)
Book cover: Mixed MotivesMixed Motives
by - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(9758 views)