**Lectures on Numerical Methods for Non-Linear Variational Problems**

by R. Glowinski

**Publisher**: Tata Institute of Fundamental Research 1980**ISBN/ASIN**: 3540775064**Number of pages**: 265

**Description**:

Many physics problems have variational formulations making them appropriate for numerical treatment by finite element techniques and efficient iterative methods. This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Fundamental Numerical Methods and Data Analysis**

by

**George W. Collins, II**-

**NASA ADS**

'Fundamental Numerical Methods and Data Analysis' can serve as the basis for a wide range of courses that discuss numerical methods used in science. The author provides examples of the more difficult algorithms integrated into the text.

(

**11804**views)

**Numerical Recipes in Fortran 90**

by

**William H. Press, at al.**-

**Cambridge University Press**

Numerical Recipes in Fortran 90 contains a detailed introduction to the Fortran 90 language and to the basic concepts of parallel programming, plus source code for all routines from the second edition of Numerical Recipes.

(

**11764**views)

**Linear Optimisation and Numerical Analysis**

by

**Ian Craw**-

**University of Aberdeen**

The book describes the simplex algorithm and shows how it can be used to solve real problems. It shows how previous results in linear algebra give a framework for understanding the simplex algorithm and describes other optimization algorithms.

(

**10704**views)

**Introduction to Numerical Methods**

by

**Jeffrey R. Chasnov**-

**The Hong Kong University**

This is primarily for non-mathematics majors and is required by several engineering departments. Contents: IEEE Arithmetic; Root Finding; Systems of equations; Least-squares approximation; Interpolation; Integration; Ordinary differential equations.

(

**3754**views)