**Lectures on Numerical Methods for Non-Linear Variational Problems**

by R. Glowinski

**Publisher**: Tata Institute of Fundamental Research 1980**ISBN/ASIN**: 3540775064**Number of pages**: 265

**Description**:

Many physics problems have variational formulations making them appropriate for numerical treatment by finite element techniques and efficient iterative methods. This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Robust Geometric Computation**

by

**Kurt Mehlhorn, Chee Yap**-

**New York University**

Contents: Introduction to Geometric Nonrobustness; Modes of Numerical Computation; Geometric Computation; Arithmetic Approaches; Geometric Approaches; Exact Geometric Computation; Perturbation; Filters; Algebraic Background; Zero Bounds; etc.

(

**6732**views)

**Computational Mathematics for Differential Equations**

by

**N. V. Kopchenova, I. A. Maron**

This is a manual on solving problems in computational mathematics. The book is intended primarily for engineering students, but may also prove useful for economics students, graduate engineers, and postgraduate students in the applied sciences.

(

**12896**views)

**Numerical Methods Course Notes**

by

**Steven E. Pav**-

**University of California at San Diego**

From the table of contents: A 'Crash' Course in octave/Matlab; Solving Linear Systems; Finding Roots; Interpolation; Spline Interpolation; Approximating Derivatives; Integrals and Quadrature; Least Squares; Ordinary Differential Equations.

(

**10607**views)

**Tea Time Numerical Analysis**

by

**Leon Q. Brin**-

**Southern Connecticut State University**

A one semester introduction to numerical analysis. Includes typical introductory material, root finding, numerical calculus, and interpolation techniques. The focus is on the mathematics rather than application to engineering or sciences.

(

**4545**views)