Logo

Physics, Topology, Logic and Computation: A Rosetta Stone

Small book cover: Physics, Topology, Logic and Computation: A Rosetta Stone

Physics, Topology, Logic and Computation: A Rosetta Stone
by

Publisher: arXiv
Number of pages: 73

Description:
With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory, proof theory or computer science.

Home page url

Download or read it online for free here:
Download link
(810KB, PDF)

Download mirrors:
Mirror 1

Similar books

Book cover: SolitonsSolitons
by - University of Cambridge
These lectures cover aspects of solitons with focus on applications to the quantum dynamics of supersymmetric gauge theories and string theory. The lectures consist of four sections, each dealing with a different soliton.
(11546 views)
Book cover: Introduction to Mathematical PhysicsIntroduction to Mathematical Physics
by - Wikibooks
The goal of this book is to propose an ensemble view of modern physics. The coherence between various fields of physics is insured by following two axes: a first is the universal mathematical language; the second is the study of the N body problem.
(10356 views)
Book cover: Foundations Of Potential TheoryFoundations Of Potential Theory
by - Springer
The present volume gives a systematic treatment of potential functions. It has a purpose to serve as an introduction for students and to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications.
(7322 views)
Book cover: Group TheoryGroup Theory
by - University of Lund
The text deals with basic Group Theory and its applications. Contents: Abstract Group Theory; Theory of Group Representations; Group Theory in Quantum Mechanics; Lie Groups; Atomic Physics; The Group SU2: Isospin; The Point Groups; The Group SU3.
(16685 views)