Logo

Physics, Topology, Logic and Computation: A Rosetta Stone

Small book cover: Physics, Topology, Logic and Computation: A Rosetta Stone

Physics, Topology, Logic and Computation: A Rosetta Stone
by

Publisher: arXiv
Number of pages: 73

Description:
With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory, proof theory or computer science.

Home page url

Download or read it online for free here:
Download link
(810KB, PDF)

Download mirrors:
Mirror 1

Similar books

Book cover: Feynman Diagrams and Differential EquationsFeynman Diagrams and Differential Equations
by - arXiv
The authors review the method of differential equations for the evaluation of D-dimensionally regulated Feynman integrals. After dealing with the technique, we discuss its application in the context of corrections to the photon propagator in QED.
(9872 views)
Book cover: Graph and Network Theory in Physics: A Short IntroductionGraph and Network Theory in Physics: A Short Introduction
by - arXiv
Text consisting of some of the main areas of research in graph theory applied to physics. It includes graphs in condensed matter theory, such as the tight-binding and the Hubbard model. It follows the study of graph theory and statistical physics...
(6449 views)
Book cover: Mathematical Physics IIMathematical Physics II
by - SISSA
These are lecture notes on various topics in analytic theory of differential equations: Singular points of solutions to analytic differential equations; Monodromy of linear differential operators with rational coefficients.
(12920 views)
Book cover: Elements for Physics: Quantities, Qualities, and Intrinsic TheoriesElements for Physics: Quantities, Qualities, and Intrinsic Theories
by - Springer
Reviews Lie groups, differential geometry, and adapts the usual notion of linear tangent application to the intrinsic point of view proposed for physics. The theory of heat conduction and the theory of linear elastic media are studied in detail.
(12442 views)