**Frobenius Splittings and B-Modules**

by Wilberd van der Kallen

**Publisher**: Springer 1993**ISBN/ASIN**: B001B1EJ4K**Number of pages**: 112

**Description**:

The course given by the author at the Tata Institute in 1992 explains the solution by O. Mathieu of some conjectures in the representation theory of arbitrary semisimple algebraic groups. The conjectures concern filtrations of 'standard' representations; while Demazure studied the representations by means of a particular resolution of singularities of Schubert varieties, the method of Mathieu involves sheaf cohomology and 'Frobenius splittings' on a Demazure resolution in finite characteristic p.

Download or read it online for free here:

**Download link**

(5.1MB, PDF)

## Similar books

**Groupoids and Smarandache Groupoids**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

This book by Dr. W. B. Vasantha aims to give a systematic development of the basic non-associative algebraic structures viz. Smarandache groupoids. Smarandache groupoids exhibits simultaneously the properties of a semigroup and a groupoid.

(

**6128**views)

**An Introduction to the Theory of Groups of Finite Order**

by

**Harold Hilton**-

**Oxford Clarendon Press**

This book aims at introducing the reader to more advanced treatises and original papers on Groups of finite order. The subject requires for its study only an elementary knowledge of Algebra. I have tried to lighten for him the initial difficulties.

(

**2146**views)

**Lectures on Algebraic Groups**

by

**Alexander Kleshchev**-

**University of Oregon**

Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.

(

**7460**views)

**Algebraic Groups, Lie Groups, and their Arithmetic Subgroups**

by

**J. S. Milne**

This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.

(

**7853**views)