**Mass and Angular Momentum in General Relativity**

by J.L. Jaramillo, E. Gourgoulhon

**Publisher**: arXiv 2010**Number of pages**: 41

**Description**:

We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries, we focus on the discussion of energy-momentum for the gravitational field. We illustrate the difficulties rooted in the Equivalence Principle for defining a local energy-momentum density for the gravitational field.

Download or read it online for free here:

**Download link**

(360KB, PDF)

## Similar books

**Vector Analysis and the Theory of Relativity**

by

**Francis Dominic Murnaghan**-

**Johns Hopkins press**

This monograph is the outcome of lectures delivered to the graduate department of mathematics of The Johns Hopkins University. Considerations of space have made it somewhat condensed in form, but the mode of presentation is sufficiently novel.

(

**11467**views)

**Complex Geometry of Nature and General Relativity**

by

**Giampiero Esposito**-

**arXiv**

An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.

(

**12728**views)

**General Relativity Without Calculus**

by

**Jose Natario**-

**Springer**

This book was written as a guide for a one week course aimed at exceptional students in their final years of secondary education. The course was intended to provide a quick but nontrivial introduction to Einstein's general theory of relativity.

(

**6927**views)

**The Confrontation between General Relativity and Experiment**

by

**Clifford M. Will**-

**arXiv**

The status of experimental tests of general relativity and of theoretical frameworks for analyzing them are reviewed and updated. Tests of general relativity have reached high precision, including the light deflection, the Shapiro time delay, etc.

(

**4532**views)