Logo

Mass and Angular Momentum in General Relativity

Small book cover: Mass and Angular Momentum in General Relativity

Mass and Angular Momentum in General Relativity
by

Publisher: arXiv
Number of pages: 41

Description:
We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries, we focus on the discussion of energy-momentum for the gravitational field. We illustrate the difficulties rooted in the Equivalence Principle for defining a local energy-momentum density for the gravitational field.

Home page url

Download or read it online for free here:
Download link
(360KB, PDF)

Similar books

Book cover: Recent Developments in Gravitational Collapse and Spacetime SingularitiesRecent Developments in Gravitational Collapse and Spacetime Singularities
by - arXiv
The research of recent years has provided considerable clarity and insight on stellar collapse, black holes and the nature and structure of spacetime singularities. In this text, the authors discuss several of these developments here.
(5603 views)
Book cover: Neutrosophic Methods in General RelativityNeutrosophic Methods in General Relativity
by - Hexis
Neutrosophy is a theory developed by Florentin Smarandache in 1995, which studies the nature and properties of neutralities. This book applies neutrosophic method to the General Theory of Relativity, aiming to discover new effects hidden before.
(4480 views)
Book cover: Gravitational Waves, Sources, and DetectorsGravitational Waves, Sources, and Detectors
by - arXiv
Notes of lectures for graduate students, covering the theory of linearized gravitational waves, their sources, and the prospects at the time for detecting gravitational waves. The lectures remain of interest for pedagogical reasons.
(5031 views)
Book cover: Spacetime Geometry and General RelativitySpacetime Geometry and General Relativity
by - King's College London
This course is meant as introduction to what is widely considered to be the most beautiful and imaginative physical theory ever devised: General Relativity. It is assumed that you have a reasonable knowledge of Special Relativity as well as tensors.
(4889 views)