Logo

Hyperbolic Geometry by J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry

Small book cover: Hyperbolic Geometry

Hyperbolic Geometry
by

Publisher: MSRI
Number of pages: 57

Description:
These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They give five different analytic models for and several combinatorial approximations to non-Euclidean geometry by means of which the reader can develop an intuition for the behavior of this geometry.

Download or read it online for free here:
Download link
(570KB, PDF)

Similar books

Book cover: The Elements Of Non-Euclidean GeometryThe Elements Of Non-Euclidean Geometry
by - Oxford At The Clarendon Press
Chapters include: Foundation For Metrical Geometry In A Limited Region; Congruent Transformations; Introduction Of Trigonometric Formulae; Analytic Formulae; Consistency And Significance Of The Axioms; Geometric And Analytic Extension Of Space; etc.
(8152 views)
Book cover: The Elements of Non-Euclidean Plane Geometry and TrigonometryThe Elements of Non-Euclidean Plane Geometry and Trigonometry
by - Longmans, Green and co.
In this book the author has attempted to treat the Elements of Non-Euclidean Plane Geometry and Trigonometry in such a way as to prove useful to teachers of Elementary Geometry in schools and colleges. Hyperbolic and elliptic geometry are covered.
(5437 views)
Book cover: Non-Euclidean GeometryNon-Euclidean Geometry
by - Ginn and Company
This book gives a simple and direct account of the Non-Euclidean Geometry, and one which presupposes but little knowledge of Mathematics. The entire book can be read by one who has taken the mathematical courses commonly given in our colleges.
(10064 views)
Book cover: Euclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical SystemsEuclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical Systems
by - Open Court Publishing Co.
The parallel postulate is the only distinctive characteristic of Euclid. To pronounce upon its validity and general philosophical significance without endeavoring to know what Non-Euclideans have done would be an inexcusable blunder ...
(3525 views)