Logo

Notes on Combinatorics by Peter J. Cameron

Small book cover: Notes on Combinatorics

Notes on Combinatorics
by

Publisher: Queen Mary, University of London
Number of pages: 130

Description:
Contents: Subsets and binomial coefficients; Selections and arrangements; Power series; Recurrence relations; Partitions and permutations; The Principle of Inclusion and Exclusion; Families of sets; Systems of distinct representatives; Latin squares; Steiner triple systems.

Home page url

Download or read it online for free here:
Download link
(440KB, PDF)

Similar books

Book cover: Combinatorial Geometry with Application to Field TheoryCombinatorial Geometry with Application to Field Theory
by - InfoQuest
Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.
(11547 views)
Book cover: Foundations of Combinatorics with ApplicationsFoundations of Combinatorics with Applications
by - Dover Publications
This introduction to combinatorics, the interaction between computer science and mathematics, is suitable for upper-level undergraduates and graduate students in engineering, science, and mathematics. Some ability to construct proofs is assumed.
(7630 views)
Book cover: Enumerative Combinatorics: Volume 1Enumerative Combinatorics: Volume 1
by - MIT
The standard guide to the topic for students and experts alike. The material in Volume 1 was chosen to cover those parts of enumerative combinatorics of greatest applicability and with the most important connections with other areas of mathematics.
(3590 views)
Book cover: New Perspectives in Algebraic CombinatoricsNew Perspectives in Algebraic Combinatorics
by - Cambridge University Press
The rich combinatorial problems arising from the study of various algebraic structures are the subject of the book. It will present the state of the art to graduate students and researchers in combinatorics as well as algebra, geometry, and topology.
(8456 views)