**Lie Systems: Theory, Generalisations, and Applications**

by J.F. Carinena, J. de Lucas

**Publisher**: arXiv 2011**Number of pages**: 163

**Description**:

Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping: the so-called superposition rule.

Download or read it online for free here:

**Download link**

(1.5MB, PDF)

## Similar books

**Step-by-Step BS to PhD Math/Physics**

by

**Alex Alaniz**-

**UC Riverside**

These are step-by-verifiable-step notes which are designed to help students with a year of calculus based physics who are about to enroll in ordinary differential equations go all the way to doctoral foundations in either mathematics or physics.

(

**11903**views)

**Lectures on Diffusion Problems and Partial Differential Equations**

by

**S.R.S. Varadhan**-

**Tata Institute of Fundamental Research**

Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. The section on Martingales is based on additional lectures given by K. Ramamurthy of the Indian Institute of Science.

(

**8150**views)

**A Window into Zeta and Modular Physics**

by

**Klaus Kirsten, Floyd L. Williams**-

**Cambridge University Press**

This book provides an introduction, with applications, to three interconnected mathematical topics: zeta functions in their rich variety; modular forms; vertex operator algebras. Applications of the material to physics are presented.

(

**8851**views)

**Partial Differential Equations of Mathematical Physics**

by

**William W. Symes**-

**Rice University**

This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.

(

**13865**views)