Logo

Notes on Linear Algebra by Peter J. Cameron

Small book cover: Notes on Linear Algebra

Notes on Linear Algebra
by

Publisher: Queen Mary, University of London
Number of pages: 124

Description:
On the theoretical side, we deal with vector spaces, linear maps, and bilinear forms. On the practical side, the subject is really about one thing: matrices. This module is a mixture of abstract theory, with rigorous proofs, and concrete calculations with matrices.

Home page url

Download or read it online for free here:
Download link
(390KB, PDF)

Similar books

Book cover: Special Set Linear Algebra and Special Set Fuzzy Linear AlgebraSpecial Set Linear Algebra and Special Set Fuzzy Linear Algebra
by - CuArt
Special Set Linear Algebras introduced by the authors in this free book is an extension of Set Linear Algebras, which are the most generalized form of linear algebras. These structures can be applied to multi-expert models.
(6435 views)
Book cover: Linear Algebra Review and ReferenceLinear Algebra Review and Reference
by - Stanford University
From the tabble of contents: Basic Concepts and Notation; Matrix Multiplication; Operations and Properties; Matrix Calculus (Gradients and Hessians of Quadratic and Linear Functions, Least Squares, Eigenvalues as Optimization, etc.).
(13318 views)
Book cover: Differential Equations and Linear AlgebraDifferential Equations and Linear Algebra
by - Heriot-Watt University
From the table of contents: Linear second order ODEs; Homogeneous linear ODEs; Non-homogeneous linear ODEs; Laplace transforms; Linear algebraic equations; Matrix Equations; Linear algebraic eigenvalue problems; Systems of differential equations.
(2111 views)
Book cover: Lectures on Linear Algebra and MatricesLectures on Linear Algebra and Matrices
by - Texas A&M University
Contents: Vectors and Vector Spaces; Matrices and Linear Algebra; Eigenvalues and Eigenvectors; Unitary Matrices; Hermitian Theory; Normal Matrices; Factorization Theorems; Jordan Normal Form; Hermitian and Symmetric Matrices; Nonnegative Matrices.
(9138 views)