Holonomy Groups in Riemannian Geometry
by Andrew Clarke, Bianca Santoro
Publisher: arXiv 2012
Number of pages: 124
Description:
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
Download or read it online for free here:
Download link
(800KB, PDF)
Similar books
Semi-Riemann Geometry and General Relativity
by Shlomo Sternberg
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(18879 views)
by Shlomo Sternberg
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(18879 views)
Complex Analysis on Riemann Surfaces
by Curtis McMullen - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(14728 views)
by Curtis McMullen - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(14728 views)
Medians and Means in Riemannian Geometry: Existence, Uniqueness and Computation
by M. Arnaudon, F. Barbaresco, L. Yang - arXiv
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. The existence and uniqueness results of local medians are given. We propose a subgradient algorithm and prove its convergence.
(10346 views)
by M. Arnaudon, F. Barbaresco, L. Yang - arXiv
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. The existence and uniqueness results of local medians are given. We propose a subgradient algorithm and prove its convergence.
(10346 views)
Riemannian Geometry
by Ilkka Holopainen, Tuomas Sahlsten
Based on the lecture notes on differential geometry. From the contents: Differentiable manifolds, a brief review; Riemannian metrics; Connections; Geodesics; Curvature; Jacobi fields; Curvature and topology; Comparison geometry; The sphere theorem.
(9060 views)
by Ilkka Holopainen, Tuomas Sahlsten
Based on the lecture notes on differential geometry. From the contents: Differentiable manifolds, a brief review; Riemannian metrics; Connections; Geodesics; Curvature; Jacobi fields; Curvature and topology; Comparison geometry; The sphere theorem.
(9060 views)