Logo

Tensor Techniques in Physics: a concise introduction

Small book cover: Tensor Techniques in Physics: a concise introduction

Tensor Techniques in Physics: a concise introduction
by

Publisher: Learning Development Institute
Number of pages: 30

Description:
Contents: Linear vector spaces; Elements of tensor algebra; The tensor calculus (Volume elements, tensor densities, and volume integrals); Applications in Relativity Theory (Elements of special relativity, Tensor form of Maxwell's equations).

Home page url

Download or read it online for free here:
Download link
(250KB, PDF)

Similar books

Book cover: A Mathematics Primer for Physics Graduate StudentsA Mathematics Primer for Physics Graduate Students
by
The author summarizes most of the more advanced mathematical trickery seen in electrodynamics and quantum mechanics in simple and friendly terms with examples. Mathematical tools such as tensors or differential forms are covered in this text.
(17496 views)
Book cover: Differential Equations of Mathematical PhysicsDifferential Equations of Mathematical Physics
by - arXiv
These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.
(4052 views)
Book cover: Lecture Notes on Quantum Brownian MotionLecture Notes on Quantum Brownian Motion
by - arXiv
Einstein's kinetic theory of the Brownian motion, based upon water molecules bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. It is a challenge to verify the diffusion from the Schroedinger equation.
(4862 views)
Book cover: Clifford Algebra, Geometric Algebra, and ApplicationsClifford Algebra, Geometric Algebra, and Applications
by - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
(9005 views)