**Tensor Techniques in Physics: a concise introduction**

by Roy McWeeny

**Publisher**: Learning Development Institute 2011**Number of pages**: 30

**Description**:

Contents: Linear vector spaces; Elements of tensor algebra; The tensor calculus (Volume elements, tensor densities, and volume integrals); Applications in Relativity Theory (Elements of special relativity, Tensor form of Maxwell's equations).

Download or read it online for free here:

**Download link**

(250KB, PDF)

## Similar books

**A Mathematics Primer for Physics Graduate Students**

by

**Andrew E. Blechman**

The author summarizes most of the more advanced mathematical trickery seen in electrodynamics and quantum mechanics in simple and friendly terms with examples. Mathematical tools such as tensors or differential forms are covered in this text.

(

**17496**views)

**Differential Equations of Mathematical Physics**

by

**Max Lein**-

**arXiv**

These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.

(

**4052**views)

**Lecture Notes on Quantum Brownian Motion**

by

**Laszlo Erdos**-

**arXiv**

Einstein's kinetic theory of the Brownian motion, based upon water molecules bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. It is a challenge to verify the diffusion from the Schroedinger equation.

(

**4862**views)

**Clifford Algebra, Geometric Algebra, and Applications**

by

**Douglas Lundholm, Lars Svensson**-

**arXiv**

These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.

(

**9005**views)