**Differential Calculus**

by Pierre Schapira

**Publisher**: Université Paris VI 2011**Number of pages**: 60

**Description**:

The aim of these Notes is to provide a short and self-contained presentation of the main concepts of differential calculus. Our point of view is to work in the abstract setting of a real normed space, and when necessary to specialize to the case of a finite dimensional space endowed with a basis.

Download or read it online for free here:

**Download link**

(360KB, PDF)

## Similar books

**Real Analysis**

by

**A. M. Bruckner, J. B. Bruckner, B. S. Thomson**-

**Prentice Hall**

This book provides an introductory chapter containing background material as well as a mini-overview of much of the course, making the book accessible to readers with varied backgrounds. It uses a wealth of examples to illustrate important concepts.

(

**13798**views)

**Elementary Real Analysis**

by

**B. S. Thomson, J. B. Bruckner, A. M. Bruckner**-

**Prentice Hall**

The book is written in a rigorous, yet reader friendly style with motivational and historical material that emphasizes the big picture and makes proofs seem natural rather than mysterious. Introduces key concepts such as point set theory and other.

(

**14031**views)

**Real Variables: With Basic Metric Space Topology**

by

**Robert B. Ash**-

**Institute of Electrical & Electronics Engineering**

A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.

(

**55576**views)

**Undergraduate Analysis Tools**

by

**Bruce K. Driver**-

**University of California, San Diego**

Contents: Natural, integer, and rational Numbers; Fields; Real Numbers; Complex Numbers; Set Operations, Functions, and Counting; Metric Spaces; Series and Sums in Banach Spaces; Topological Considerations; Differential Calculus in One Real Variable.

(

**3471**views)