Step-by-Step BS to PhD Math/Physics

Small book cover: Step-by-Step BS to PhD Math/Physics

Step-by-Step BS to PhD Math/Physics

Publisher: UC Riverside
Number of pages: 323

These are step-by-verifiable-step notes which are designed to help students with a year of calculus based physics who are about to enroll in ordinary differential equations go all the way to doctoral foundations in either mathematics and more so in physics with much reduced mystery. Abstract algebra, topology (local and global) folds into a useful, intuitive toolset for ordinary differential equations and partial differential equations, be they linear or nonlinear.

Download or read it online for free here:
Download link
(2.8MB, PDF)

Similar books

Book cover: Topics in Spectral TheoryTopics in Spectral Theory
by - McGill University
The subject of these lecture notes is spectral theory of self-adjoint operators and some of its applications to mathematical physics. The main theme is the interplay between spectral theory of self-adjoint operators and classical harmonic analysis.
Book cover: An Introduction to Topos PhysicsAn Introduction to Topos Physics
by - arXiv
The basic notion of how topoi can be utilized in physics is presented here. Topos and category theory serve as valuable tools which extend our ordinary set-theoretical conceptions, can give rise to new descriptions of quantum physics.
Book cover: Lecture Notes on Quantum Brownian MotionLecture Notes on Quantum Brownian Motion
by - arXiv
Einstein's kinetic theory of the Brownian motion, based upon water molecules bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. It is a challenge to verify the diffusion from the Schroedinger equation.
Book cover: A Mathematics Primer for Physics Graduate StudentsA Mathematics Primer for Physics Graduate Students
The author summarizes most of the more advanced mathematical trickery seen in electrodynamics and quantum mechanics in simple and friendly terms with examples. Mathematical tools such as tensors or differential forms are covered in this text.