**Step-by-Step BS to PhD Math/Physics**

by Alex Alaniz

**Publisher**: UC Riverside 2013**Number of pages**: 323

**Description**:

These are step-by-verifiable-step notes which are designed to help students with a year of calculus based physics who are about to enroll in ordinary differential equations go all the way to doctoral foundations in either mathematics and more so in physics with much reduced mystery. Abstract algebra, topology (local and global) folds into a useful, intuitive toolset for ordinary differential equations and partial differential equations, be they linear or nonlinear.

Download or read it online for free here:

**Download link**

(2.8MB, PDF)

## Similar books

**Random Matrices**

by

**B. Eynard**

This is an introductory course about random matrices. These notes will give the reader a smell of that fascinating tool for physicists and mathematicians that are Random Matrices, and they can give the envy to learn and search more.

(

**5391**views)

**A Set of Appendices on Mathematical Methods for Physics Students**

by

**Anne Fry, Amy Plofker, Sarah-marie Belcastro**

Useful mathematical background for physics students at all undergraduate levels. Topics: Matrices, Eigenvalues and Eigenvectors, Intro To Differential Equations, Integration, Fourier Analysis and Transforms, Converting Sums to Integrals, etc.

(

**5184**views)

**Introduction to Spectral Theory of SchrÃ¶dinger Operators**

by

**A. Pankov**-

**Vinnitsa State Pedagogical University**

Contents: Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; etc.

(

**4365**views)

**Lectures on the Singularities of the Three-Body Problem**

by

**C.L. Siegel**-

**Tata Institute of Fundamental Research**

From the table of contents: The differential equations of mechanics; The three-body problem : simple collisions (The n-body problem); The three-body problem: general collision (Stability theory of solutions of differential equations).

(

**4464**views)