Logo

Second-order Ordinary Differential Equations

Small book cover: Second-order Ordinary Differential Equations

Second-order Ordinary Differential Equations
by

Publisher: Bookboon
ISBN-13: 9788776819729
Number of pages: 181

Description:
This text provides an introduction to all the relevant material normally encountered at university level: series solution, special functions (Bessel, etc.), Sturm-Liouville theory (involving the appearance of eigenvalues and eigenfunctions) and the definition, properties and use of various integral transforms (Fourier, Laplace, etc.). Numerous worked examples are provided throughout.

Home page url

Download or read it online for free here:
Download link
(2.5MB, PDF)

Similar books

Book cover: Examples of differential equations, with rules for their solutionExamples of differential equations, with rules for their solution
by - Boston, Ginn & Company
This work has been prepared to meet a want in a course on the subject, arranged for advanced students in Physics. It could be used in connection with lectures on the theory of Differential Equations and the derivation of the methods of solution.
(9239 views)
Book cover: A First Course in Ordinary Differential EquationsA First Course in Ordinary Differential Equations
by - Bookboon
The book consists of lecture notes intended for engineering and science students who are reading a first course in ordinary differential equations and who have already read a course on linear algebra, general vector spaces and integral calculus.
(8277 views)
Book cover: Elementary Differential EquationsElementary Differential Equations
by - Brooks Cole
This text has been written in clear and accurate language that students can read and comprehend. The author has minimized the number of explicitly state theorems and definitions, in favor of dealing with concepts in a more conversational manner.
(9134 views)
Book cover: Periodic Solutions for Evolution EquationsPeriodic Solutions for Evolution Equations
by - American Mathematical Society
We study the existence and uniqueness of periodic solutions for evolution equations. We analyze the one-dimensional case, then for arbitrary dimensions. We consider linear symmetric operators. We prove the same results for non-linear operators.
(10165 views)