Logo

Introduction to Algebraic Geometry

Small book cover: Introduction to Algebraic Geometry

Introduction to Algebraic Geometry
by

Publisher: Indian Institute of Technology Bombay
Number of pages: 20

Description:
This text is a brief introduction to algebraic geometry. We will focus mainly on two basic results in algebraic geometry, known as Bezout's Theorem and Hilbert's Nullstellensatz, each of which can be viewed as a generalization of the Fundamental Theorem of Algebra.

Home page url

Download or read it online for free here:
Download link
(200KB, PDF)

Similar books

Book cover: Algebraic Groups and Discontinuous SubgroupsAlgebraic Groups and Discontinuous Subgroups
by - American Mathematical Society
The book covers linear algebraic groups and arithmetic groups, adeles and arithmetic properties of algebraic groups, automorphic functions and spectral decomposition of L2-spaces, vector valued cohomology and deformation of discrete subgroups, etc.
(11156 views)
Book cover: Geometry UnboundGeometry Unbound
by
This is not a typical math textbook, it does not present full developments of key theorems, but it leaves strategic gaps in the text for the reader to fill in. The original text underlying this book was a set of notes for the Math Olympiad Program.
(11942 views)
Book cover: Convex Bodies and Algebraic GeometryConvex Bodies and Algebraic Geometry
by - Springer
The theory of toric varieties describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications ...
(3783 views)
Book cover: An Introduction to Complex Algebraic GeometryAn Introduction to Complex Algebraic Geometry
by - Institut Fourier Grenoble
This is an advanced course in complex algebraic geometry presupposing only some familiarity with theory of algebraic curves or Riemann surfaces. The goal is to understand the Enriques classification of surfaces from the point of view of Mori-theory.
(7605 views)