**Lectures on Integrable Hamiltonian Systems**

by G.Sardanashvily

**Publisher**: arXiv 2013**Number of pages**: 127

**Description**:

We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. For instance, this is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and integrable systems with time-dependent parameters.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Random Matrices**

by

**B. Eynard**

This is an introductory course about random matrices. These notes will give the reader a smell of that fascinating tool for physicists and mathematicians that are Random Matrices, and they can give the envy to learn and search more.

(

**6420**views)

**Special Functions and Their Symmetries: Postgraduate Course in Applied Analysis**

by

**Vadim Kuznetsov, Vladimir Kisil**-

**University of Leeds**

This text presents fundamentals of special functions theory and its applications in partial differential equations of mathematical physics. The course covers topics in harmonic, classical and functional analysis, and combinatorics.

(

**10424**views)

**Lectures on Diffusion Problems and Partial Differential Equations**

by

**S.R.S. Varadhan**-

**Tata Institute of Fundamental Research**

Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. The section on Martingales is based on additional lectures given by K. Ramamurthy of the Indian Institute of Science.

(

**5409**views)

**Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions**

by

**Solomon I. Khmelnik**-

**MiC**

In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.

(

**5905**views)