Logo

Fluctuation-Dissipation: Response Theory in Statistical Physics

Small book cover: Fluctuation-Dissipation: Response Theory in Statistical Physics

Fluctuation-Dissipation: Response Theory in Statistical Physics
by

Publisher: arXiv
Number of pages: 148

Description:
General aspects of the Fluctuation-Dissipation Relation (FDR), and Response Theory are considered. After analyzing the conceptual and historical relevance of fluctuations in statistical mechanics, we illustrate the relation between the relaxation of spontaneous fluctuations, and the response to an external perturbation.

Home page url

Download or read it online for free here:
Download link
(980KB, PDF)

Similar books

Book cover: Lecture Notes on Thermodynamics and Statistical MechanicsLecture Notes on Thermodynamics and Statistical Mechanics
by - University of California, San Diego
Contents: Probability 2. Thermodynamics 3. Ergodicity and the Approach to Equilibrium 4. Statistical Ensembles 5. Noninteracting Quantum Systems 6. Classical Interacting Systems 7. Mean Field Theory of Phase Transitions 8. Nonequilibrium Phenomena.
(10786 views)
Book cover: Kinetic TheoryKinetic Theory
by - University of Cambridge
This is a graduate course on topics in non-equilibrium statistical mechanics, covering kinetic theory, stochastic processes and linear response. It is aimed at masters students and PhD students. The full set of lecture notes are around 100 pages.
(9957 views)
Book cover: Non-equilibrium Statistical MechanicsNon-equilibrium Statistical Mechanics
by - arXiv
We review some of the many recent activities on non-equilibrium statistical mechanics, focusing on general aspects. Using the language of stochastic Markov processes, we emphasize general properties of the evolution of configurational probabilities.
(8320 views)
Book cover: Thermodynamics and Statistical PhysicsThermodynamics and Statistical Physics
by - University of Bonn
Contents: Introduction and overview; Thermodynamics; Foundations of statistical physics; Ideal systems: some examples; Systems of identical particles; General formulation of statistical mechanics; Interacting systems in thermodyn. equilibrium.
(15204 views)