**Applied Combinatorics**

by Mitchel T. Keller, William T. Trotter

**Publisher**: Georgia Institute of Technology 2013**Number of pages**: 345

**Description**:

The purpose of the course is to give students a broad exposure to combinatorial mathematics, using applications to emphasize fundamental concepts and techniques. Our approach to the course is to show students the beauty of combinatorics and how combinatorial problems naturally arise in many settings, particularly in computer science.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Discrepancy Theory**

by

**William Chen**-

**Macquarie University**

Contents: Uniform Distribution; Classical Discrepancy Problem; Generalization of the Problem; Introduction to Lower Bounds; Introduction to Upper Bounds; Fourier Transform Techniques; Upper Bounds in the Classical Problem; Disc Segment Problem; etc.

(

**5432**views)

**Topics in Algebraic Combinatorics**

by

**Richard P. Stanley**-

**MIT**

Contents: Walks in graphs; Cubes and the Radon transform; Random walks; The Sperner property; Group actions on boolean algebras; Young diagrams and q-binomial coefficients; Enumeration under group action; A glimpse of Young tableaux; etc.

(

**6340**views)

**Combinatorial Geometry with Application to Field Theory**

by

**Linfan Mao**-

**InfoQuest**

Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.

(

**11547**views)

**Enumerative Combinatorics: Volume 1**

by

**Richard P. Stanley**-

**MIT**

The standard guide to the topic for students and experts alike. The material in Volume 1 was chosen to cover those parts of enumerative combinatorics of greatest applicability and with the most important connections with other areas of mathematics.

(

**3590**views)