Logo

An Elementary Treatise on Conic Sections

Large book cover: An Elementary Treatise on Conic Sections

An Elementary Treatise on Conic Sections
by

Publisher: The Macmillan Company
ISBN/ASIN: B0010QA332
Number of pages: 378

Description:
In the following work I have investigated the more elementary properties of the Ellipse, Parabola, and Hyperbola, defined with reference to a focus and directrix, before considering the General Equation of the Second Degree. I believe that this arrangement is the best for beginners.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Researches on Curves of the Second OrderResearches on Curves of the Second Order
by - Project Gutenberg
Researches on curves of the second order are given in this book, also on cones and spherical conics treated analytically, in which the tangencies of Apollonius are investigated, and general geometrical constructions deduced from analysis.
(6062 views)
Book cover: A Course of Pure Geometry: Properties of the Conic SectionsA Course of Pure Geometry: Properties of the Conic Sections
by - Cambridge University Press
The book does not assume any previous knowledge of the Conic Sections, which are here treated on the basis of the definition of them as the curves of projection of a circle. Many of the properties of the Conic Sections are proved quite simply.
(7753 views)
Book cover: Geometry Formulas and FactsGeometry Formulas and Facts
by - CRC Press
Contents: Coordinate Systems in the Plane; Plane Symmetries or Isometries; Lines; Polygons; Circles; Conics; Special Plane Curves; Coordinate Systems in Space; Space Symmetries or Isometries; Directions, Planes and Lines; Polyhedra; Spheres; etc.
(8448 views)
Book cover: Coordinate GeometryCoordinate Geometry
by - The MacMillan Company
Contents: Coordinates; The Straight Line; The Circle; The Parabola; The Ellipse; The Hyperbola; Transformation Of Coordinates; The General Equation Of The Second Degree; Sections Of A Cone; Systems Of Conics; Tangents And Polars Of The Conic; etc.
(10307 views)