**Space - Time - Matter**

by Hermann Weyl

**Publisher**: Methuen & Co. 1922**ISBN/ASIN**: 0486602672**Number of pages**: 517

**Description**:

A classic of physics -- the first systematic presentation of Einstein's theory of relativity. Long one of the standard texts in the field, this excellent introduction probes deeply into Euclidean space, Riemann's space, Einstein's general relativity, gravitational waves and energy, and laws of conservation.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

Download mirrors:**Mirror 1**

## Similar books

**Post-Newtonian Theory for the Common Reader**

by

**Eric Poisson**-

**University of Guelph**

From the table of contents: Preliminaries; Integration techniques; First post-Minkowskian approximation; Second post-Minkowskian approximation; Equations of motion; Gravitational waves; Energy radiated and radiation reaction.

(

**6938**views)

**Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction**

by

**Christian Heinicke, Friedrich W. Hehl**-

**arXiv**

Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild solution, and into one specific stationary solution, the Kerr solution.

(

**5040**views)

**The Mathematical Theory of Relativity**

by

**Arthur Stanley Eddington**-

**Cambridge University Press**

Sir Arthur Eddington here formulates mathematically his conception of the world of physics derived from the theory of relativity. The argument is developed in a form which throws light on the origin and significance of the great laws of physics.

(

**2440**views)

**Mass and Angular Momentum in General Relativity**

by

**J.L. Jaramillo, E. Gourgoulhon**-

**arXiv**

We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries.

(

**6082**views)