Logo

Space - Time - Matter by Hermann Weyl

Large book cover: Space - Time - Matter

Space - Time - Matter
by

Publisher: Methuen & Co.
ISBN/ASIN: 0486602672
Number of pages: 517

Description:
A classic of physics -- the first systematic presentation of Einstein's theory of relativity. Long one of the standard texts in the field, this excellent introduction probes deeply into Euclidean space, Riemann's space, Einstein's general relativity, gravitational waves and energy, and laws of conservation.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Download mirrors:
Mirror 1

Similar books

Book cover: General Covariance and the Foundations of General RelativityGeneral Covariance and the Foundations of General Relativity
by - University of Pittsburgh
This text reviews the development of Einstein's thought on general covariance (the fundamental physical principle of GTR), its relation to the foundations of general relativity and the evolution of the continuing debate over his viewpoint.
(6009 views)
Book cover: A No-Nonsense Introduction to General RelativityA No-Nonsense Introduction to General Relativity
by
General relativity has a reputation of being extremely difficult. This introduction is a very pragmatic affair, intended to give you some immediate feel for the language of GR. It does not substitute for a deep understanding -- that takes more work.
(3817 views)
Book cover: Light Rays, Singularities, and All ThatLight Rays, Singularities, and All That
by - arXiv.org
This article is an introduction to causal properties of General Relativity. Topics include the Raychaudhuri equation, singularity theorems of Penrose and Hawking, the black hole area theorem, topological censorship, and the Gao-Wald theorem.
(508 views)
Book cover: Mass and Angular Momentum in General RelativityMass and Angular Momentum in General Relativity
by - arXiv
We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries.
(5024 views)