**Geometric Complexity Theory: An Introduction for Geometers**

by J.M. Landsberg

**Publisher**: arXiv 2013**Number of pages**: 38

**Description**:

This is survey of recent developments in, and a tutorial on, the approach to P v. NP and related questions called Geometric Complexity Theory (GCT). The article is written to be accessible to graduate students. Numerous open questions in algebraic geometry and representation theory relevant for GCT are presented.

Download or read it online for free here:

**Download link**

(440KB, PDF)

## Similar books

**Complex Analytic and Differential Geometry**

by

**Jean-Pierre Demailly**-

**Universite de Grenoble**

Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.

(

**13681**views)

**Algebraic Geometry**

by

**J.S. Milne**

These notes are an introduction to the theory of algebraic varieties. In contrast to most such accounts they study abstract algebraic varieties, not just subvarieties of affine and projective space. This approach leads naturally to scheme theory.

(

**11822**views)

**Multiplication of Vectors and Structure of 3D Euclidean Space**

by

**Miroslav Josipovic**-

**viXra**

This text is a motivational survey of geometric algebra in 3D. The intention here was to use simple examples and reader is referred to the independent problem solving. The active reading of text is recommended, with paper and pencil in hand.

(

**2831**views)

**Lectures on Curves on Rational and Unirational Surfaces**

by

**Masayoshi Miyanishi**-

**Tata Institute of Fundamental Research**

From the table of contents: Introduction; Geometry of the affine line (Locally nilpotent derivations, Algebraic pencils of affine lines, Flat fibrations by the affine line); Curves on an affine rational surface; Unirational surfaces; etc.

(

**6118**views)