Geometric Complexity Theory: An Introduction for Geometers

Small book cover: Geometric Complexity Theory: An Introduction for Geometers

Geometric Complexity Theory: An Introduction for Geometers

Publisher: arXiv
Number of pages: 38

This is survey of recent developments in, and a tutorial on, the approach to P v. NP and related questions called Geometric Complexity Theory (GCT). The article is written to be accessible to graduate students. Numerous open questions in algebraic geometry and representation theory relevant for GCT are presented.

Home page url

Download or read it online for free here:
Download link
(440KB, PDF)

Similar books

Book cover: Introduction To Algebraical GeometryIntroduction To Algebraical Geometry
by - Oxford University Press
The author's aim has been to produce a book suitable to the beginner who wishes to acquire a sound knowledge of the more elementary parts of the subject, and also sufficient for the candidate for a mathematical scholarship.
Book cover: Lectures on Deformations of SingularitiesLectures on Deformations of Singularities
by - Tata Institute of Fundamental Research
These notes are based on a series of lectures given in 1973. The lectures are centered about the work of M. Scahlessinger and R. Elkik on infinitesimal deformations. Contents: Formal Theory and Computations; Elkik's Theorems on Algebraization.
Book cover: Current Topics in Complex Algebraic GeometryCurrent Topics in Complex Algebraic Geometry
by - Cambridge University Press
The 1992/93 year at the Mathematical Sciences Research Institute was devoted to Complex Algebraic Geometry. This volume collects articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change.
Book cover: Lectures on Logarithmic Algebraic GeometryLectures on Logarithmic Algebraic Geometry
by - University of California, Berkeley
Logarithmic geometry deals with two problems in algebraic geometry: compactification and degeneration. Contents: The geometry of monoids; Log structures and charts; Morphisms of log schemes; Differentials and smoothness; De Rham and Betti cohomology.