Geometric Complexity Theory: An Introduction for Geometers

Small book cover: Geometric Complexity Theory: An Introduction for Geometers

Geometric Complexity Theory: An Introduction for Geometers

Publisher: arXiv
Number of pages: 38

This is survey of recent developments in, and a tutorial on, the approach to P v. NP and related questions called Geometric Complexity Theory (GCT). The article is written to be accessible to graduate students. Numerous open questions in algebraic geometry and representation theory relevant for GCT are presented.

Home page url

Download or read it online for free here:
Download link
(440KB, PDF)

Similar books

Book cover: Algorithms in Real Algebraic GeometryAlgorithms in Real Algebraic Geometry
by - Springer
The monograph gives a detailed exposition of the algorithmic real algebraic geometry. It is well written and will be useful both for beginners and for advanced readers, who work in real algebraic geometry or apply its methods in other fields.
Book cover: Ample Subvarieties of Algebraic VarietiesAmple Subvarieties of Algebraic Varieties
by - Springer
These notes are an enlarged version of a three-month course of lectures. Their style is informal. I hope they will serve as an introduction to some current research topics, for students who have had a one year course in modern algebraic geometry.
Book cover: An Introduction to Semialgebraic GeometryAn Introduction to Semialgebraic Geometry
by - Universite de Rennes
Semialgebraic geometry is the study of sets of real solutions of systems of polynomial equations and inequalities. These notes present the first results of semialgebraic geometry and related algorithmic issues. Their content is by no means original.
Book cover: Lectures on Logarithmic Algebraic GeometryLectures on Logarithmic Algebraic Geometry
by - University of California, Berkeley
Logarithmic geometry deals with two problems in algebraic geometry: compactification and degeneration. Contents: The geometry of monoids; Log structures and charts; Morphisms of log schemes; Differentials and smoothness; De Rham and Betti cohomology.