Introduction to Twisted Commutative Algebras

Small book cover: Introduction to Twisted Commutative Algebras

Introduction to Twisted Commutative Algebras

Publisher: arXiv
Number of pages: 56

This article is an expository account of the theory of twisted commutative algebras, which simply put, can be thought of as a theory for handling commutative algebras with large groups of linear symmetries. Examples include the coordinate rings of determinantal varieties, Segre-Veronese embeddings, and Grassmannians.

Home page url

Download or read it online for free here:
Download link
(620KB, PDF)

Similar books

Book cover: Commutative Algebra and Noncommutative Algebraic GeometryCommutative Algebra and Noncommutative Algebraic Geometry
by - Cambridge University Press
The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These volumes reflect the lively interaction between the subjects.
Book cover: Commutative AlgebraCommutative Algebra
by - University of Georgia
Contents: Introduction to Commutative Rings; Introduction to Modules; Ideals; Examples of Rings; Swan's Theorem; Localization; Noetherian Rings; Boolean rings; Affine algebras and the Nullstellensatz; The spectrum; Integral extensions; etc.
Book cover: A Primer of Commutative AlgebraA Primer of Commutative Algebra
These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses.
Book cover: Theory and Applications of Lattice Point Methods for Binomial IdealsTheory and Applications of Lattice Point Methods for Binomial Ideals
by - arXiv
This is a survey of lattice point methods for binomial ideals. It is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.