Introduction to Twisted Commutative Algebras
by Steven V Sam, Andrew Snowden
Publisher: arXiv 2012
Number of pages: 56
Description:
This article is an expository account of the theory of twisted commutative algebras, which simply put, can be thought of as a theory for handling commutative algebras with large groups of linear symmetries. Examples include the coordinate rings of determinantal varieties, Segre-Veronese embeddings, and Grassmannians.
Download or read it online for free here:
Download link
(620KB, PDF)
Similar books
Lectures on Commutative Algebra
by Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These lecture notes attempt to give a rapid review of the rudiments of classical commutative algebra. Topics covered: rings and modules, Noetherian rings, integral extensions, Dedekind domains, and primary decomposition of modules.
(9897 views)
by Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These lecture notes attempt to give a rapid review of the rudiments of classical commutative algebra. Topics covered: rings and modules, Noetherian rings, integral extensions, Dedekind domains, and primary decomposition of modules.
(9897 views)
Homological Conjectures
by Tom Marley, Laura Lynch - University of Nebraska - Lincoln
This course is an overview of Homological Conjectures, in particular, the Zero Divisor Conjecture, the Rigidity Conjecture, the Intersection Conjectures, Bass' Conjecture, the Superheight Conjecture, the Direct Summand Conjecture, etc.
(11356 views)
by Tom Marley, Laura Lynch - University of Nebraska - Lincoln
This course is an overview of Homological Conjectures, in particular, the Zero Divisor Conjecture, the Rigidity Conjecture, the Intersection Conjectures, Bass' Conjecture, the Superheight Conjecture, the Direct Summand Conjecture, etc.
(11356 views)
Commutative Algebra
by Keerthi Madapusi - Harvard University
Contents: Graded Rings and Modules; Flatness; Integrality: the Cohen-Seidenberg Theorems; Completions and Hensel's Lemma; Dimension Theory; Invertible Modules and Divisors; Noether Normalization and its Consequences; Quasi-finite Algebras; etc.
(12026 views)
by Keerthi Madapusi - Harvard University
Contents: Graded Rings and Modules; Flatness; Integrality: the Cohen-Seidenberg Theorems; Completions and Hensel's Lemma; Dimension Theory; Invertible Modules and Divisors; Noether Normalization and its Consequences; Quasi-finite Algebras; etc.
(12026 views)
Theory and Applications of Lattice Point Methods for Binomial Ideals
by Ezra Miller - arXiv
This is a survey of lattice point methods for binomial ideals. It is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.
(9556 views)
by Ezra Miller - arXiv
This is a survey of lattice point methods for binomial ideals. It is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.
(9556 views)