Logo

A No-Nonsense Introduction to General Relativity

Small book cover: A No-Nonsense Introduction to General Relativity

A No-Nonsense Introduction to General Relativity
by


Number of pages: 24

Description:
General relativity has a reputation of being extremely difficult. This introduction is a very pragmatic affair, intended to give you some immediate feel for the language of General Relativity. It does not substitute for a deep understanding -- that takes more work.

Home page url

Download or read it online for free here:
Download link
(160KB, PDF)

Similar books

Book cover: General RelativityGeneral Relativity
by - lightandmatter.com
This is an undergraduate textbook on general relativity. It is well adapted for self-study, and answers are given in the back of the book for almost all the problems. The ratio of conceptual to mathematical problems is higher than in most books.
(10759 views)
Book cover: Partial Differential Equations of PhysicsPartial Differential Equations of Physics
by - arXiv
All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.
(14054 views)
Book cover: Dynamical and Hamiltonian Formulation of General RelativityDynamical and Hamiltonian Formulation of General Relativity
by - arXiv.org
This text introduces the reader to the reformulation of Einstein's field equations of General Relativity as a constrained evolutionary system of Hamiltonian type and discusses some of its uses, together with some technical and conceptual aspects.
(4086 views)
Book cover: Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introductionSchwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction
by - arXiv
Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild solution, and into one specific stationary solution, the Kerr solution.
(6275 views)