Logo

A No-Nonsense Introduction to General Relativity

Small book cover: A No-Nonsense Introduction to General Relativity

A No-Nonsense Introduction to General Relativity
by


Number of pages: 24

Description:
General relativity has a reputation of being extremely difficult. This introduction is a very pragmatic affair, intended to give you some immediate feel for the language of General Relativity. It does not substitute for a deep understanding -- that takes more work.

Home page url

Download or read it online for free here:
Download link
(160KB, PDF)

Similar books

Book cover: Partial Differential Equations of PhysicsPartial Differential Equations of Physics
by - arXiv
All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.
(13614 views)
Book cover: Advanced General RelativityAdvanced General Relativity
by - King's College London
Contents: Introduction; Manifolds and Tensors; General Relativity (Derivation, Diffeomorphisms as Gauge Symmetries, Weak Field Limit, Tidal Forces, ...); The Schwarzchild Black Hole; More Black Holes; Non-asymptotically Flat Solutions.
(7619 views)
Book cover: Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introductionSchwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction
by - arXiv
Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild solution, and into one specific stationary solution, the Kerr solution.
(5808 views)
Book cover: An Introduction to the Theory of Rotating Relativistic StarsAn Introduction to the Theory of Rotating Relativistic Stars
by - arXiv
These notes introduce the theory of rotating stars in general relativity. The focus is on the theoretical foundations, with a detailed discussion of the spacetime symmetries, the choice of coordinates and the derivation of the equations of structure.
(9977 views)