Data Compression Explained
by Matt Mahoney
Publisher: mattmahoney.net 2013
Description:
This book is for the reader who wants to understand how data compression works, or who wants to write data compression software. Prior programming ability and some math skills will be needed. This book is intended to be self contained.
Download or read it online for free here:
Download link
(multiple formats)
Similar books
Information and Coding
by Karl Petersen - AMS
The aim is to review the many facets of information, coding, and cryptography, including their uses throughout history and their mathematical underpinnings. Prerequisites included high-school mathematics and willingness to deal with unfamiliar ideas.
(3320 views)
by Karl Petersen - AMS
The aim is to review the many facets of information, coding, and cryptography, including their uses throughout history and their mathematical underpinnings. Prerequisites included high-school mathematics and willingness to deal with unfamiliar ideas.
(3320 views)
Data Compression
- Wikibooks
Data compression is useful in some situations because 'compressed data' will save time (in reading and on transmission) and space if compared to the unencoded information it represent. In this book, we describe the decompressor first.
(7173 views)
- Wikibooks
Data compression is useful in some situations because 'compressed data' will save time (in reading and on transmission) and space if compared to the unencoded information it represent. In this book, we describe the decompressor first.
(7173 views)
Around Kolmogorov Complexity: Basic Notions and Results
by Alexander Shen - arXiv.org
Algorithmic information theory studies description complexity and randomness. This text covers the basic notions of algorithmic information theory: Kolmogorov complexity, Solomonoff universal a priori probability, effective Hausdorff dimension, etc.
(3775 views)
by Alexander Shen - arXiv.org
Algorithmic information theory studies description complexity and randomness. This text covers the basic notions of algorithmic information theory: Kolmogorov complexity, Solomonoff universal a priori probability, effective Hausdorff dimension, etc.
(3775 views)
Information Theory, Inference, and Learning Algorithms
by David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(24775 views)
by David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(24775 views)